Biocompatibility of an interspinous implant made of titanium alloys

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

BACKGROUND: At present, metal implants are widely used in neuro-orthopedics, of which titanium alloys are of particular interest. A team of authors developed an original combined implant for posterior spinal fusion as an import substitution, which can be used from one-way access during minimally invasive operations on the lumbar spine. The implant was manufactured at the Endocarbon Enterprise in Penza. For better osseointegration, it is made of VT6 alloy and titanium nickelide. The middle part of the implant is laser-treated to create an uneven surface in the hope of better integration in the tissues of the body. This study was conducted to assess the cytotoxicity and biocompatibility of this implant for its further application in clinical practice.

AIM: To determine the cytotoxicity of an interspinous implant made of titanium alloys for its further introduction into spinal surgery.

MATERIALS AND METHODS: To determine the cytotoxicity of titanium samples of interspinous implants, a methyltetrazolium test was conducted to assess the viability of stromal cells in the presence of a nutrient medium after incubation with the test material. The biocompatibility of the material was analyzed using scanning electron microscopy of samples 1 and 7 days after cell culture.

RESULTS: The viability of cells cultured in the presence of a nutrient medium after incubation with samples of titanium VT6 was 105% and that of titanium nickelide was 98%, which were comparable to the viability of cells in a standard nutrient medium. With electron microscopy, after 1 day of cultivation, cells form a monolayer on a titanium surface, all cells were well spread out and formed intercellular contacts, and after 7 days of cultivation, the number of cells increased and they formed a dense monolayer.

CONCLUSIONS: The interspinous implant, which includes alloys of titanium VT6 and titanium nickelide, is biocompatible with cultured cells and can be introduced into spinal surgery.

Full Text

Restricted Access

About the authors

Vladimir P. Orlov

Kirov Military Medical Academy

Email: vladimir.rlv@rambler.ru
ORCID iD: 0000-0002-5009-7117
SPIN-code: 9790-6804

MD, PhD, Dr. Sci. (Med.), Professor, Assistant Professor

Russian Federation, Saint Petersburg

Yuliya A. Nashchekina

Institute of Cytology of the Russian Academy of Sciences

Email: nashchekina.yu@mail.ru
ORCID iD: 0000-0002-4371-7445
SPIN-code: 1138-8088
Scopus Author ID: 56285797600

MD, PhD, Cand. Sci. (Med.)

Russian Federation, Saint Petersburg

Alexey V. Nashchekin

Ioffe Institute of the Russian Academy of Sciences

Email: nashchekin@mail.ioffe.ru
ORCID iD: 0000-0002-2542-7364
SPIN-code: 6638-5243
Scopus Author ID: 6603372975
ResearcherId: A-7182-2014

PhD, Cand. Sci. (Phys. and Math.)

Russian Federation, Saint Petersburg

Olga N. Ozeryanskaya

City Hospital, Nevinnomyssk

Email: olechka303@ya.ru
ORCID iD: 0000-0002-9956-2972

MD, neurosurgeon

Russian Federation, Nevinnomyssk

Saidmirze D. Mirzametov

Kirov Military Medical Academy

Author for correspondence.
Email: said19mirze@mail.ru
ORCID iD: 0000-0002-1890-7546
SPIN-code: 5959-1988
Scopus Author ID: 57210236589
ResearcherId: AAE-2675-2022

MD, neurosurgeon

Russian Federation, Saint Petersburg

Dmitry V. Svistov

Kirov Military Medical Academy

Email: dvsvistov@mail.ru
ORCID iD: 0000-0002-3922-9887
SPIN-code: 3184-5590

MD, PhD, Cand. Sci. (Med.), Assistant Professor

Russian Federation, Saint Petersburg

References

  1. Jiang S, Wang M, He J. A review of biomimetic scaffolds for bone regeneration: toward a cell-free strategy. Bioeng Transl Med. 2021;6(2). doi: 10.1002/btm2.10206
  2. Hamilton RF, Wu N, Xiang C, et al. Synthesis, characterization, and bioactivity of carboxylic acid-functionalized titanium dioxide nanobelts. Particle and fibre toxicology. 2014;11(1):1–15. doi: 10.1186/s12989-014-0043-7
  3. Geetha M, Singh AK, Asokamani R, et al. Ti based biomaterials, the ultimate choice for orthopaedic implants — a review. Progress in materials science. 2009;54(3):397–425. doi: 10.1016/j.pmatsci.2008.06.004
  4. Kunii T, Mori Y, Tanaka H, et al. Improved osseointegration of a TiNbSn alloy with a low Young’s modulus treated with anodic oxidation. Scientific Reports. 2019;9(1). doi: 10.1038/s41598-019-50581-7
  5. Long M, Rack HJ. Titanium alloys in total joint replacement — a materials science perspective. Biomaterials. 1998;19(18):1621–1639. doi: 10.1016/S0142-9612(97)00146-4
  6. Longhofer LK, Chong A, Strong NM, et al. Specific material effects of wear-particle-induced inflammation and osteolysis at the bone–implant interface: a rat model. J Orthop Translat. 2017;8:5–11. doi: 10.1016/j.jot.2016.06.026
  7. Lian F, Zhao C, Qu J, et al. Icariin attenuates titanium particle-induced inhibition of osteogenic differentiation and matrix mineralization via miR-21-5p. Cell Biol Int. 2018;42(8):931–939. doi: 10.1002/cbin.10957
  8. GOST 19807-91 of 01.07.1992. Wrought titanium and titanium alloys. Grades. (In Russ.). [cited 2022 Feb 24]. Available from: https://www.rst.gov.ru/portal/gost/home/standarts/cataloginter?portal:componentId=26cba537-adcd-44ed-9a44-72c63a7c7bc2&portal:isSecure=false&portal:portletMode=view&navigationalstate=JBPNS_rO0ABXc6AAZhY3Rpb24AAAABABBjb25jcmV0ZURvY3VtZW50AAZkb2NfaWQAAAABAAUzNDUxMgAHX19FT0ZfXw
  9. Mirgazizov MZ, Galonsky VG, Olesova VN, et al. Materials and implants with shape memory in dentistry. Vol. 5. Ed. by V.E. Gunter. Medical materials and implants with shape memory: in 14 vol. Tomsk: MIC, 2011. (In Russ.)
  10. Patent RF na izobretenie No. 2765858 03.02.22. Byul. No. 4. Orlov VP, Mirzametov S, Ozeryanskaya ON, et al. Sposob kombinirovannogo zadnego spondilodeza i skoba dlja ego osushhestvlenija. Available from: https://fips.ru/registers-doc-view/fips_servlet?DB=RUPAT&rn=5494&DocNumber=2765858&TypeFile=html. (In Russ.)
  11. Orlov VP, Ozyanskaya ON, Mirzametov SD, et al. Development of a method for stabilization the vertebral motor segment after lumbar microdiscectomy. Russian neurosurgical journal n.a. professor A.L. Polenov. 2021;13(1):35–42. (In Russ.)
  12. Zheng G, Guan B, Hu P, et al. Topographical cues of direct metal laser sintering titanium surfaces facilitate osteogenic differentiation of bone marrow mesenchymal stem cells through epigenetic regulation. Cell Prolif. 2018;51(4). doi: 10.1111/cpr.12460
  13. Еshkulov UE, Tarbokov VA, Ivanov SYu, et al. In vitro researches into the biocompatibility of titanium alloys with a modified surface. Journal Biomed. 2021;17(2):79–87. (In Russ.). doi: 10.33647/2074-5982-17-2-79-87
  14. Jayaraman M, Meyer U, Bühner M, et al. Influence of titanium surfaces on attachment of osteoblast-like cells in vitro. Biomaterials. 2004;25(4):625–631. doi: 10.1016/S0142-9612(03)00571-4
  15. Santander S, Alcaine C, Lyahyai J, et al. In vitro osteoinduction of human mesenchymal stem cells in biomimetic surface modified titanium alloy implants. Dent Mater J. 2012;31(5):843–850. doi: 10.4012/dmj.2012-015
  16. Schwartz Z, Raz P, Zhao G, et al. Effect of micrometer-scale roughness of the surface of Ti6Al4V pedicle screws in vitro and in vivo. J Bone Joint Surg Am. 2008;90(11):2485–2498. doi: 10.2106/JBJS.G.00499
  17. Telegin SV, Lyasnikov VN, GotzI Yu. Morphology of the titanium surface modified by pulsed laser processing. Vestnik Saratov State Technical University. 2015;3(1):101–106. (In Russ.)
  18. Itälä A, Ylänen HO, Yrjans J, et al. Characterization of microrough bioactive glass surface: surface reactions and osteoblast responses in vitro. J Biomed Mater Res. 2002;62(3):404–411. doi: 10.1002/jbm.10273J
  19. Olivares-Navarrete R, Raz P, Zhao G, et al. Integrin α2β1 plays a critical role in osteoblast response to micron-scale surface structure and surface energy of titanium substrates. Proc Natl Acad Sci USA. 2008;105(41):15767–15772. doi: 10.1073/pnas.0805420105
  20. Anselme K. Osteoblast adhesion on biomaterials. Biomaterials. 2000;21(7):667–681. doi: 10.1016/S0142-9612(99)00242-2
  21. Keller JC, Stanford CM, Wightman JP, et al. Characterizations of titanium implant surfaces. III. J Biomed Mater Res. 1994;28(8):939–946. doi: 10.1002/jbm.820280813

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Appearance of the interspinous implant: a, sketch; b, implant installed in the interspinous space of the lumbar spine of the skeleton

Download (229KB)
3. Fig. 2. Scanning electron microscopy of the implant surface: a, b, main body; c, d, limiters; e, f, titanium nickelide wire

Download (385KB)
4. Fig. 3. Viability of FetMSC cells after 3 days of cultivation in the presence of a conditioned medium. Control group: the cells are on a culture plastic with a complete nutrient medium. VT6 group: the cells are on a culture plastic with a complete nutrient medium after the incubation of the main body of the implant based on VT6. Ti nickelide group: the cells are on cultural plastic with a complete nutrient medium after the incubation of shape-memory wire based on titanium nickelide

Download (55KB)
5. Fig. 4. Scanning electron microscopy of cultured cells on titanium samples with a porous surface structure: a, after 1 day of cultivation; b, after 7 days of cultivation

Download (161KB)

Copyright (c) 2022 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС77-54261 от 24 мая 2013 г.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies