Features of the reparative osteogenesis of the distraction of the tibial regenerate and osteotropic growth factors in patients with achondroplasia at the age of 9–12 years

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

BACKGROUND: Despite studies on various issues of distraction osteosynthesis, many morphological aspects of this problem are still insufficiently studied and remained debatable.

AIM: To determine the features of the reparative activity of the regenerate and analyze the content of some osteotropic growth factors in children with achondroplasia.

MATERIALS AND METHODS: Growth factors were determined in serum and blood plasma using equipment from Thermo Fisher (USA). Factor concentrations were determined using ELISA kits: PDGF-AA (R&D Systems, USA), PDGF-BB (R&D Systems, USA), IGF-1 (Immunodiagnostic systems, USA), IGF-2 (Mediagnost, Germany), TGF-β1 (eBioscience, USA), and TGF-β2 (eBioscience, USA). The structural state of the tibial regenerate was determined using by ultrasonography (HITACHI, Japan). Patients with achondroplasia aged 9–12 years (n = 32) were examined at the beginning of distraction (10–20 days), in the middle of distraction (21–40 days), and at the end of distraction (41–63 days).

RESULTS: The ultrasound method showed the dynamic formation of the structural state of the distraction regenerate at the studied stages of distraction. At the same stages of distraction, the concentration of osteotropic growth factors was assessed.

CONCLUSIONS: The serum content of osteotropic growth factors in the blood of children with achondroplasia differs from age-normative values. Growth factors that play a key role in osteogenesis, IGF-1, BMP-4, TGF-β1, and TGF-β2 were reduced, whereas the expressions of IGF-2 and BMP-6 were compensatory increased. At the end of the distraction period, the values of all studied growth factors exceeded the initial values, regardless of their preoperative values and their dynamics at the stages of distraction. The assessment of the dynamics of the concentration of osteotropic growth factors in the blood of patients with achondroplasia during the distraction period and natural growth period indicate the presence of a commonality of processes during the distraction period and prenatal growth of the tibia. Our comprehensive ultrasound study of the structural state of the distraction regenerate of the tibia and biochemical studies of growth factors in the blood of patients with achondroplasia at the age of 9–12 years made it possible to identify the features of reparative osteogenesis of the distraction regenerate of the tibia and the physiological effect of osteotropic growth factors from the viewpoint of the process of reparative regeneration.

Full Text

Restricted Access

About the authors

Svetlana N. Lyneva

Ilizarov National Medical Research Centre for Traumatology and Orthopedics

Author for correspondence.
Email: luneva_s@mail.ru
ORCID iD: 0000-0002-0578-1964
SPIN-code: 9572-2655
Scopus Author ID: 26024323300
ResearcherId: R-4032-2018

PhD, Dr. Sci. (Biol.), Professor

Russian Federation, Kurgan

Tatyana I. Menschchikova

Ilizarov National Medical Research Centre for Traumatology and Orthopedics

Email: tat-mench@mail.ru
ORCID iD: 0000-0002-5244-7539
SPIN-code: 2820-9120

PhD, Dr. Sci. (Biol.)

Russian Federation, Kurgan

Anna M. Aranovich

Ilizarov National Medical Research Centre for Traumatology and Orthopedics

Email: aranovich_anna@mail.ru
ORCID iD: 0000-0002-7806-7083
SPIN-code: 7277-6339

MD, PhD, Dr. Sci. (Med.), Professor

Russian Federation, Kurgan

References

  1. Wrobel W, Pach E, Ben-Skowronek I. Advantages and disadvantages of different treatment methods in achondroplasia. Int J Mol Sci. 2021;22(11):5573. doi: 10.3390/ijms22115573
  2. Legeai-Mallet L, Savarirayan R. Novel therapeutic approaches for the treatment of achondroplasia. J Bone. 2020;141:115579. doi: 10.1016/j.bone.2020.115579
  3. Maes C. Signaling pathways effecting crosstalk between cartilage and adjacent tissues: Seminars in cell and developmental biology: The biology and pathology of cartilage. Semin Cell Dev Biol. 2017;62:16−33. doi: 10.1016/j.semcdb.2016.05.007
  4. Lui JC, Nilsson O, Baron J. Recent research on the growth plate: Recent insights into the regulation of the growth plate. J Mol Endocrinol. 2014;53(1):1−9. doi: 10.1530/JME-14-0022
  5. Kozhemyakina E, Lassar AB, Zelzer E. A pathway to bone: signaling molecules and transcription factors involved in chondrocyte development and maturation. Development. 2015;142(5):817−831. doi: 10.1242/dev.105536
  6. Naski MC, Colvin JS, Coffin JD, Ornitz DM. Repression of hedgehog signaling and BMP4 expression in growth plate cartilage by fibroblast growth factor receptor 3. Development. 1998;125(24):4977−4988. doi: 10.1242/dev.125.24.4977
  7. Horton WA, Hall JG, Hecht JT. Achondroplasia. Lancet. 2007;370(9582):162−172. doi: 10.1016/S0140-6736(07)61090-3
  8. Pauli RM. Achondroplasia: A comprehensive clinical review. Orphanet J Rare Dis. 2019;14(1):1. doi: 10.1186/s13023-018-0972-6
  9. Menshchikova TI, Aranovich AM. Udlineniye goleney u bol’nykh akhondroplaziyey 6-9 let kak pervyy etap korrektsii rosta. Geniy ortopedii. 2021;27(3):366−371. (In Russ.)
  10. Vykhovanets YeP, Luneva SN, Nakoskina NV. Kontsentratsiya nekotorykh osteotropnykh faktorov rosta i markerov osteogeneza v krovi somaticheski zdorovykh detey i vzroslykh. Fiziologiya cheloveka. 2018;44(6):1−7. (In Russ.)
  11. Glants S. Medical and Biological Statistics. Moscow: Praktika; 1998. (In Russ.)
  12. Wang Y, Zhang H, Cao M, et al. Analysis of the value and correlation of IGF-1 with GH and IGFBP-3 in the diagnosis of dwarfism. Exp Ther Med. 2019;17(5):3689−3693. doi: 10.3892/etm.2019.7393
  13. Yamanaka Y, Ueda K, Seino Y, Tanaka H. Molecular basis for the treatment of achondroplasia. Horm Res. 2003;60(Suppl 3):60−64. doi: 10.1159/000074503
  14. Hutchison MR, Bassett MH, Perrin C. White insulin-like growth factor-I and fibroblast growth factor, but not growth hormone, affect growth plate chondrocyte proliferation. Endocrinology. 2007;148(7):3122−3130. doi: 10.1210/en.2006-1264
  15. Yorifuji T, Higuchi S, Kawakita R. Growth hormone treatment for achondroplasia. Pediatr Endocrinol Rev. 2018;(Suppl 1):123−128. doi: 10.17458/per.vol16.2018.yhk.ghachondroplasia
  16. Koike M, Yamanaka Y, Inoue M, et al. Insulin-like growth factor-1 rescues the mutated FGF receptor 3 (G380R) expressing ATDC5 cells from apoptosis through phosphatidylinositol 3-kinase and MAPK. J Bone Miner Res. 2003;18(11):2043−2051. doi: 10.1359/jbmr.2003.18.11.2043
  17. Lavrishcheva GI, Onopriyenko GA. Morfologicheskiye i klinicheskiye aspekty reparativnoy regeneratsii opornykh organov i tkaney. Moscow: Meditsina; 1996. (In Russ.)
  18. Livingstone C. IGF2 and cancer. Endocr Relat Cancer. 2013;20(6):321−339. doi: 10.1530/ERC-13-0231
  19. Pavlova LA, Pavlova TV, Nesterov AB. Sovremennoe predstavlenie ob osteoinduktivnykh mekhanizmakh regeneratsii kostnoi tkani. Obzor sostoyaniya problemy. Nauchnye vedomosti Belgorodskogo gosudarstvennogo universiteta. Seriya: Meditsina. Farmatsiya. 2010;(10):5–11.
  20. Sakou T, Onishi T, Yamamoto T, et al. Localization of Smads, the TGF-beta family intracellular signaling components during endochondral ossification. J Bone Miner Res. 1999;14(7):1145−1152. doi: 10.1359/jbmr.1999.14.7.1145
  21. Li TF, O’Keefe RJ, Chen D. TGF-beta signaling in chondrocytes. Front Biosci. 2005;10:681−688. doi: 10.2741/1563
  22. Sanford LP, Ormsby I, Gittenberger-de Groot AC, et al. TGF beta2 knockout mice have multiple developmental defects that are nonoverlapping with other TGFbeta knockout phenotypes. Development. 1997;124:2659−2670. doi: 10.1242/dev.124.13.2659
  23. Kulkarni AB, Huh CG, Becker D, et al. Transforming growth factor beta 1 null mutation in mice causes excessive inflammatory response and early death. Proc Natl Acad Sci USA. 1993;90(2):770−774. doi: 10.1073/pnas.90.2.770
  24. Kaartinen V, Voncken JW, Shuler C, et al. Abnormal lung development and cleft palate in mice lacking TGF-beta 3 indicates defects of epithelial-mesenchymal interaction. Nat Genet. 1995;11(4):415−421. doi: 10.1038/ng1295-415
  25. Blobe GC, Schiemann WP, Lodish HF. Role of transforming growth factor beta in human disease. N Engl J Med. 2000;342(18):1350−1358. doi: 10.1056/NEJM200005043421807
  26. Li YP, Chen W, Liang Y, Li E, Stashenko P. Atp6i-deficient mice exhibit severe osteopetrosis due to loss of osteoclast-mediated extracellular acidification. Nat Genet. 1999;23(4):447−451. doi: 10.1038/70563
  27. Chen W, Yang S, Abe Y, et al. Novel pycnodysostosis mouse model uncovers cathepsin K function as a potential regulator of osteoclast apoptosis and senescence. Hum Mol Genet. 2007;16(4):410−423. doi: 10.1093/hmg/ddl474
  28. Abula K, Muneta T, Miyatake K, et al. Elimination of BMP7 from the developing limb mesenchyme leads to articular cartilage degeneration and synovial inflammation with increased age. FEBS Lett. 2015;589(11):1240−1248. doi: 10.1016/j.febslet.2015.04.004
  29. Wu M, Chen G, Li YP. TGF-β and BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease. Bone Res. 2016;4:16009. doi: 10.1038/boneres.2016.9
  30. Spector JA, Luchs JS, Mehrara BJ, et al. Expression of bone morphogenetic proteins during membranous bone healing. Plast Reconstr Surg. 2001;107(1):124−134. doi: 10.1097/00006534-200101000-00018
  31. Okamoto M, Murai J, Yoshikawa H, Tsumaki N. Bone morphogenetic proteins in bone stimulate osteoclasts and osteoblasts during bone development. J Bone Miner Res. 2006;21(7):1022−1033. doi: 10.1359/jbmr.060411
  32. Wutzl A, Brozek W, Lernbass I, et al. Bone morphogenetic proteins 5 and 6 stimulate osteoclast generation. J Biomed Mater Res A. 2006;77(1):75−83. doi: 10.1002/jbm.a.30615
  33. Simic P, Culej JB, Orlic I, et al. Systemically administered bone morphogenetic protein-6 restores bone in aged ovariectomized rats by increasing bone formation and suppressing bone resorption. J Biol Chem. 2006;281(35):25509−25521. doi: 10.1074/jbc.M513276200
  34. Popkov DA. Pokazateli metabolizma kollagena pri operativnom lechenii vrozhdennykh ukorocheniy nizhnikh konechnostey. Geniy ortopedii. 2004;(1):55−58. (In Russ.)
  35. Kovin’ka MA, Aranovich AM, Stogov MV. Biokhimicheskaya otsenka sostoyaniya patsiyentov s akhondroplaziyey pri udlinenii konechnostey. Geniy ortopedii. 2011;(1):125−129. (In Russ.)
  36. Menshchikova TI, Aranovich AM, Novikov KI, Dindiberya YeV. Ul’trasonogrofiya kostnogo regenerata pri normal’noy osteogennoy aktivnosti u patsiyentov s kosmeticheskoy korrektsii rosta. Geniy ortopedii. 2003;(4):27−30. (In Russ.)

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Sonograms of the regenerates of the tibia of patient Z., 12 years old. Achondroplasia, short stature. The distraction period was 9 days, bilocal elongation, and the total elongation was 1.78 cm: a, diagram of the regenerate structure; b, width of the echopositive zone of the proximal regenerate of 0.90 cm, the acoustic density of the regenerate was 95 c.u., and the acoustic density of the structures was 101 c.u.; c, width of the echopositive zone of the distal regenerate of 0.80 cm. The acoustic density of the regenerate was 89 c.u., and the acoustic density of the structures was 101 c.u. c.u., conditional units

Download (123KB)
3. Fig. 2. Sonograms of the regenerates of the tibia of patient Z., 12 years old. Achondroplasia, short stature. The distraction period was 20 days, bilocal elongation, and the total elongation was 4.0 cm: a, diagram of the regenerate structure; b, the width of the echopositive zone of the proximal regenerate was 2.2 cm, the acoustic density of the regenerate was 110 c.u., and the acoustic density of the bone trabeculae was 147 c.u.; c, the width of the echopositive zone of the distal regenerate was 1.80 cm, the acoustic density of the regenerate was 93.2 c.u., and the acoustic density of the bone trabeculae was 67 c.u. c.u., conditional units

Download (145KB)
4. Fig. 3. Sonograms of the regenerates of the tibia of patient I., 10 years old. Achondroplasia, short stature. The distraction period was 38 days, bilocal elongation, and the total elongation was 7.0 cm: a, diagram of the regenerate structure; b, width of the echopositive zone of the proximal regenerate of 5.0 cm, the acoustic density of the regenerate was 118 c.u., and the acoustic density of the bone trabeculae was 150 c.u.; c, the width of the echopositive zone of the distal regenerate was 1.80 cm, the acoustic density of the regenerate was 112 c.u, and the acoustic density of the bone trabeculae was 145 c.u. c.u., conditional units

Download (164KB)
5. Fig. 4. Sonograms of the regenerates of the tibia of patient I., 10 years old. Achondroplasia, short stature. The distraction period was 55 days, bilocal elongation, and the total elongation was 9.0 cm: a, diagram of the regenerate structure; b, the width of the echopositive zone of the proximal regenerate was 30 cm, the acoustic density of the regenerate was 119 c.u., and the acoustic density of the bone trabeculae was 182 c.u.; c, the distal regenerate is visualized in the form of a ladle, and the acoustic density of the regenerate was 128 c.u. c.u., conditional units

Download (120KB)
6. Fig. 5. Sonogram of the distraction regenerate of the tibia of patient I., 10 years old. In the duplex scanning mode, vascular branches of various diameters from 0.5 mm to 2.5 mm are developed. Peripheral indices; PI = 1.10, RI = 0.67; and PI = 1.52, RI = 0.75

Download (114KB)
7. Fig. 6. Sonogram of the distraction regenerate of the tibia of patient V., 10 years old. Achondroplasia, short stature. Bilocal elongation. The total elongation was 9 cm (proximal regenerate, 5 cm; distal regenerate, 4 cm). The reparative activity was reduced, and hypoechoic cyst-like foci of various sizes are visualized in the intermediary zone

Download (105KB)

Copyright (c) 2022 Lyneva S.N., Menschchikova T.I., Aranovich A.M.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС77-54261 от 24 мая 2013 г.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies