Assessment of the serum concentration of growth factors and the informativeness of ultrasonography in studying the structural conditions of the osteoarticular system in children with type III osteogenesis imperfecta

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

BACKGROUND: The treatment of patients with osteogenesis imperfecta requires dynamic monitoring of the structural state and metabolism of the long bones. In the available literature, practically no data are available on the use of ultrasonography to assess the skeletal system in children with osteogenesis imperfecta. Increased expression of the members of the transforming growth factor-β superfamily in the serum has been described in several congenital bone diseases; however, this has not yet been examined in children with type III osteogenesis imperfecta.

AIM: To examine the serum concentrations of growth factors in children with type III osteogenesis imperfecta relative to healthy children and evaluate the informativeness of ultrasonography for assessing the state of the osteoarticular system in type III osteogenesis imperfecta and justify the feasibility of its use in this pathology.

MATERIALS AND METHODS: Children aged 3–7 years with type III osteogenesis imperfecta (= 12) were examined. In the blood serum, bone-mineral metabolism parameters were determined on a Hitachi/BM 902 analyzer (Japan), and the contents of growth factors and their receptors were determined by enzyme-linked immunosorbent assay on a Thermo Fisher Scientific analyzer (USA). Ultrasound examinations were performed using an AVISUS Hitachi device (Japan). Statistical processing was carried out using the Attestat program (I.P. Gaidyshev). Quantitative data are presented as medians and quartiles (Me [Q1; Q3]) for samples with non-normal distribution. In cases with normal distribution, quantitative data are presented as M ± σ, p < 0.05.

RESULTS: In patients with osteogenesis imperfecta, the degree of bone tissue mineralization and bone turnover rates were higher and the collagen content was lower than those of their healthy peers. Fibroblast growth factor-basic underwent the greatest changes; a decrease in the content of the vascular endothelial growth factor (VEGF)-R3 receptor was accompanied by multiple increases in VEGF and VEGF-R2. Ultrasonography identified areas of deformation and multiple fractures in the area of the diaphyses and metaphyses of the femur, tibia, hip, and knee joints.

CONCLUSIONS: Predominance was noted toward the production of growth factors responsible for the activation of osteoclastogenesis. The content of growth factors responsible for osteoclast inhibition and osteoblast activation is normal or slightly changed. Ultrasonography has demonstrated high informativeness in a detailed assessment of the osteoarticular system in patients with osteogenesis imperfecta, which allows us to recommend this noninvasive technique for wider use in this disease.

Full Text

Restricted Access

About the authors

Svetlana N. Luneva

National Ilizarov Medical Research Center for Traumatology and Orthopaedics

Email: luneva_s@mail.ru
ORCID iD: 0000-0002-0578-1964
SPIN-code: 9572-2655

PhD, Dr. Sci. (Biol.), Professor

Russian Federation, Kurgan

Tatyana I. Menshchikova

National Ilizarov Medical Research Center for Traumatology and Orthopaedics

Author for correspondence.
Email: tat-mench@mail.ru
ORCID iD: 0000-0002-5244-7539
SPIN-code: 2820-9120

PhD, Dr. Sci. (Biol.)

Russian Federation, Kurgan

Anna M. Aranovich

National Ilizarov Medical Research Center for Traumatology and Orthopaedics

Email: aranovich_anna@mail.ru
ORCID iD: 0000-0002-7806-7083
SPIN-code: 7277-6339

MD, PhD, Dr. Sci. (Med.), Professor

Russian Federation, Kurgan

Evgeniia P. Vykhovanets

National Ilizarov Medical Research Center for Traumatology and Orthopaedics

Email: vykhovanets.eva@mail.ru
ORCID iD: 0000-0002-7661-9817
SPIN-code: 7087-3146

MD, PhD, Cand. Sci. (Med.)

Russian Federation, Kurgan

Kseniya P. Matveeva

National Ilizarov Medical Research Center for Traumatology and Orthopaedics

Email: k_paveleva1996@mail.ru
ORCID iD: 0009-0003-0246-2946

MD, PhD student

Russian Federation, Kurgan

References

  1. Grebennikova TA, Gavrilova O, Tiulpakov AN, et al. First description of a type V osteogenesis imperfecta clinical case with severe skeletal deformities caused by a mutation p.119C> T in IFITM5 gene in Russia. Osteoporosis and Bone Diseases. 2019;22(2):32–37. (In Russ.) doi: 10.14341/osteo12103
  2. Land C, Rauch F, Montpetit K, et al. Effect of intravenous pamidronate therapy on functional abilities and level of ambulation in children with osteogenesis imperfect. J Pediatr. 2006;148(4):456–460. doi: 10.1016/j.jpeds.2005.10.041
  3. Malygina AA, Grebennikova TA, Tiulpakov AN, et al. Osteogenesis imperfecta as a cause of death. Osteoporosis and Bone Diseases. 2018;21(1):23–27. (In Russ.) doi: 10.14341/osteo9733
  4. Glorieux FH. Osteogenesis imperfecta. Best Pract Res Clin Rheumatol. 2008;22(1):85–100. doi: 10.1016/j.berh.2007.12.012
  5. Michell C, Patel V, Amirfeyz R, et al. Osteogenesis imperfecta. Curr Orthop. 2007;21(3):236–241. doi: 10.1016/j.cuor.2007.04.003
  6. Sillence DO, Senn A, Danks DM. Genetic heterogeneity in osteogenesis imperfect. J Med Genet. 1979;16(2):101–116. doi: 10.1136/jmg.16.2.101
  7. Ignatovich ON, Namazova-Baranova LS, Мargieva ТV, et al. Osteogenesis imperfecta: diagnostic feature. Pediatric Pharmacology. 2018;15(3):224–232. (In Russ.) doi: 10.15690/pf.v15i3.1902
  8. Rossi V, Lee B, Marom R. Osteogenesis imperfecta: advancements in genetics and treatment. Curr Opin Pediatr. 2019;31(6):708–715. doi: 10.1097/MOP.0000000000000813
  9. Popkov AV, Karlov AV, Korkin AYa, et al. The outlooks of pathogenetic treatment of patients with the imperfect osteogenesis using elements of nano-technologies. Genij Ortopedii. 2009;(1):70–74. (In Russ.)
  10. Polyakova EYu, Shcheplyagina LA. Effect of bisphosphonate therapy on skeletal mineralization and body composition in children with osteogenesis imperfecta. Osteoporosis and Bone Diseases. 2020;23(2):130. (In Russ.)
  11. Karlov AV, Saprina TV, Kirillova NA, et al. Some clinical and pathophysiological problems and prospects of osteopenia surgical correction in patients with osteogenesis imperfect. Genij Ortopedii. 2008;(4):84–88. (In Russ.)
  12. Onopriyenko GA, Voloshin VP. Сurrent concepts in physiological and reparative osteogenesis. Al’manakh klinicheskoy meditsiny. 2017;45(2):79–93. (In Russ.) doi: 10.18786/2072-0505-2017-45-2-79-93
  13. Menshchikova TI, Menshchikov IN, Mal’tseva LV, et al. Specific characteristics of ultrasound diagnosing of primary and secondary coxarthrosis. Russian Electronic Journal of Radiology. 2019;9(1):75–88. (In Russ.) doi: 10.21569/2222-7415-2019-9-1-75-88
  14. Neretin AS, Menshchikova TI. Value of ultrasonography and radiography for the study of bone regeneration in lengthening of the fourth ray in brachymetatarsia. Foot Ankle Surg. 2021;27(4):432–438. doi: 10.1016/j.fas.2020.05.013
  15. Menschikova T, Aranovich A. Tibial lengthening in achondroplasia patients aged 6–9 years as the first stage of growth correction. Genij Ortopedii. 2021;27(3):366–371. doi: 10.18019/1028-4427-2021-27-3-366-371
  16. Palomo T, Vilaça T, Lazaretti-Castro M. Osteogenesis imperfecta: diagnosis and treatment. Curr Opin Endocrinol Diabetes Obes. 2017;24(6):381–388. doi: 10.1097/MED.0000000000000367
  17. Teng RJ, Wu TJ, Hsieh FJ. Cord blood level of insulin-like growth factor-1 and IGF binding protein-3 in monochorionic twins. J Formos Med Assoc. 2015;114(4):359–362. doi: 10.1016/j.jfma.2012.12.014
  18. Trejo P, Rauch F. Osteogenesis imperfecta in children and adolescents-new developments in diagnosis and treatment. Osteoporos Int. 2016;27(12):3427–3437. doi: 10.1007/s00198-016-3723-3
  19. Glants S. Mediko-biologicheskaya statistika. Moscow: Praktika; 1998. (In Russ.)
  20. Vasikaran S, Cooper C, Eastell R, et al. International Osteoporosis Foundation and International Federation of Clinical Chemistry and Laboratory Medicine position on bone marker standards in osteoporosis. Clin Chem Lab Med. 2011;49(8):1271–1274. doi: 10.1515/CCLM.2011.602
  21. Hofbauer LC, Kühne CA, Viereck V. The OPG/RANKL/RANK system in metabolic bone diseases. J Musculoskelet Neuronal Interact. 2004;4(3):268–275.
  22. Wu M, Chen G, Li YP. TGF-β and BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease. Bone Res. 2016;4. doi: 10.1038/boneres.2016.9
  23. Gebken J, Brenner R, Feydt A, et al. Increased cell surface expression of receptors for transforming growth factor-beta on osteoblasts from patients with osteogenesis imperfecta. Pathobiology. 2000;68(3):106–112. doi: 10.1159/000055910
  24. Ivanter EV, Korsov AV. Elementarnaya biometriya: uchebnoe posobie. Petrozavodsk: PetrGU; 2013. (In Russ.)
  25. Cho TJ, Ko JM, Kim H, et al. Management of osteogenesis imperfecta: a multidisciplinary comprehensive approach. Clin Orthop Surg. 2020;12(4):417–429. doi: 10.4055/cios20060
  26. Kivirikko KI. Collagens and their abnormalities in a wide spectrum of diseases. Ann Med. 1993;25(2):113–126. doi: 10.3109/07853899309164153
  27. Byers PH, Steiner RD. Osteogenesis imperfecta. Annu Rev Med. 1992;43:269–282. doi: 10.1146/annurev.me.43.020192.001413
  28. Prockop DJ. Mutations that alter the primary structure of type I collagen. The perils of a system for generating large structures by the principle of nucleated growth. J Biol Chem. 1990;265(26):15349–15352.
  29. Shevtsov VI, Popkov DA, Desyatnichenko KS, et al. Biochemical markers of osteogenesis activity during femoral elongation in automatic mode of high division. Genij Ortopedii. 1999;(1):35–39. (In Russ.)
  30. Landis WJ, Song MJ, Leith A, et al. Mineral and organic matrix interaction in normally calcifying tendon visualized in three dimensions by high-voltage electron microscopic tomography and graphic image reconstruction. J Struct Biol. 1993;110(1):39–54. doi: 10.1006/jsbi.1993.1003
  31. Fratzl-Zelman N, Schmidt I, Roschger P, et al. Mineral particle size in children with osteogenesis imperfecta type I is not increased independently of specific collagen mutations. Bone. 2014;60:122–128. doi: 10.1016/j.bone.2013.11.023
  32. Cortés Blanco A, Labarta Aizpún JI, Ferrández Longás A, et al. Valores de referencia de IGF-I, IGFBP-1, IGFBP-3 y osteocalcina en niños sanos zaragozanos [Reference values for IGF-I, IGFBP-1, IGFBP-3 and osteocalcin in healthy children in Zaragoza]. An Esp Pediatr. 1999;51(2):167–174. (In Span.)
  33. Loffredo FS, Steinhauser ML, Jay SM, et al. Growth differentiation factor 11 is a circulating factor that reverses age-related cardiac hypertrophy. Cell. 2013;53(4):828–839. doi: 10.1016/j.cell.2013.04.015
  34. Erickson CB, Payne KA. inductive signals and progenitor fates during osteogenesis. In: Encyclopedia of tissue and regenerative medicine. Ed. by R.L. Reis. 2019. P. 395–404.
  35. Popkov DA, Ryabykh SO. Osteogenesis Imperfecta from diagnosis to treatment. Nova Science Pub. Inc.; 2022. doi: 10.52305/BNDY1848

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 2. Sonogram of the hip joint of patient K (7 years old) with type III osteogenesis imperfecta. Standard scanning reveals a spherical femoral head with uneven and heterogeneous contour of the subchondral plate

Download (84KB)
3. Fig. 1. Sonograms of pathologic fractures of the femur and tibia of patient N., 7 years old, with type III osteogenesis imperfecta: a, disruption of the cortical plate contour integrity is visualized at the apex of the femur deformity. Small clumps measuring 1–1.2 mm are located between the ends of the fragments. The acoustic density in the fracture zone is 77.3 units (rectangle); b, tibial metaphysis; discontinuous contour is visualized. An area with multiple fractures is shown. The acoustic densities are 79.4, 88.4, and 100.5 units (rectangle)

Download (154KB)
4. Fig. 3. Sonograms of the knee joint of patient K (7 years old) with type III osteogenesis imperfecta: a, the angle of the patellar bed at maximal flexion is smoothed, with uneven hyaline cartilage, 1.5–2.2–2.8 mm thick; b, uneven contour of the subchondral plate of the tibia with small clumpy inclusions

Download (138KB)

Copyright (c) 2023 Эко-Вектор

License URL: https://eco-vector.com/for_authors.php#07

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС77-54261 от 24 мая 2013 г.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies