非运动员儿童群体的差异化稳态测量姿势控制分析及与少年运动员的比较评估

封面


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

论证。对儿童运动系统功能参数的监测有助于评估其对体力活动的适应性反应。对从事体育运动的儿童而言,健康状况的定期监测应当具有系统性。稳态测量法在青少年运动员运动系统功能诊断中具有较高的应用潜力。

目的。基于对双侧对侧下肢足底压力中心稳态测量参数不对称性的分析,制定儿童不同年龄阶段姿势控制系统的差异化评估标准,并与少年运动员的相应参数进行比较。

材料与方法。本研究分两个阶段,在两块稳态测量平台上评估健康儿童的身体垂直平衡。第一阶段对照组评估旨在确定正常稳态测量参数范围,纳入59名5至16岁的儿童,这些儿童未从事任何体育运动,其运动活动水平不超过日常身体活动负荷。该组儿童被分为4个年龄亚组:5–6岁16人、7–10岁13人、11–13岁15人、14–16岁15人。第二阶段评估主组,包括15名7–10岁的男女运动员,均在圣彼得堡体育学校接受训练。

结果。对照组儿童自5–6岁起,身体垂直平衡随年龄增长逐步改善,在14–16岁时达到最高测量值。主组7–10岁儿童在接受规律性的高强度体育训练下,其身体垂直平衡及对侧下肢功能均未受到不良影响。这可能与采用符合儿童生理年龄特点的、兼顾负荷平衡和规范化的温和训练方法有关。 儿童运动员的平衡功能质量高于不参与体育运动的同龄儿童,其各项参数的中位数分别为80%和72%(p<0.05)。同时,运动员组的压力中心线速度及静态动稳图面积参数表明其垂直平衡更加高效。 这可能与主组儿童在姿势系统发育过程中,对其运动系统所承受的系统性、定量增加的体力负荷所产生的适应性过程有关。

结论。必须考虑少年运动员对侧下肢功能的不对称性,这是儿童成长过程中正常的生理特征。该现象是由大脑半球功能侧化所引起的左、右下肢压力中心运动的生理性年龄不对称。在训练过程中,宜将对侧下肢运动功能不对称性作为重要因素加以考虑,以预防运动性损伤。

全文:

受限制的访问

作者简介

Igor E. Nikityuk

H. Turner National Medical Research Center for Children’s Orthopedics and Trauma Surgery

编辑信件的主要联系方式.
Email: femtotech@mail.ru
ORCID iD: 0000-0001-5546-2729
SPIN 代码: 5901-2048

MD, PhD, Cand. Sci. (Medicine)
俄罗斯联邦, Saint Petersburg

参考

  1. Kuchma VR, Rapoport IK, Sukhareva LM, et al. The health of children and adolescents in school ontogenesis as a basis for improving the system of school health care and sanitary-epidemiological wellbeing of students. Health Care of the Russian Federation. 2021;65(4):325–333. EDN: QSJGDO doi: 10.47470/0044-197X-2021-65-4-325-333
  2. Abramova TF, Nikitina TM, Polfuntikova AV, et al. The influence of systematic exercise on physical development and physical fitness of children aged 6–10 years. Moscow University Anthropology Bulletin. 2019;(3):5–14. EDN: MSWKLI doi: 10.32521/2074-8132.2019.3.005-014
  3. Maestroni L, Read P, Bishop C, et al. The benefits of strength training on musculoskeletal system health: practical applications for interdisciplinary care. Sports Medicine. 2020;50(8):1431–1450. EDN: NAMDRW doi: 10.1007/s40279-020-01309-5
  4. Khramtsov PI. Conceptual and methodological bases of diagnostics and prevention of disorders and diseases of the musculoskeletal system in children in educational institutions. Issues of school and university medicine and health. 2019;(1):49–57.
  5. Kozlovsky IV, Koinosov AP. Age dynamics of physiological and biomechanical components of the formation of statodynamic and postural function in children of the second period of childhood: literature review. Scientific medical bulletin of Yugra. 2022;31(1):12–22. EDN: UHIAQL doi: 10.25017/2306-1367-2022-31-1-12-22
  6. Opala-Berdzik A, Głowacka M, Wilusz K, et al. Quiet standing postural sway of 10- to 13-year-old, national-level, female acrobatic gymnasts. Acta Bioeng Biomech. 2018;20(2):117–123.
  7. Cheung TCK, Schmuckler MA. Multisensory and biomechanical influences on postural control in children. J Exp Child Psychol. 2024;(238):105796. EDN: RGFOZL doi: 10.1016/j.jecp.2023.105796
  8. Sá CDSCD, Boffino CC, Ramos RT, Tanaka C. Development of postural control and maturation of sensory systems in children of different ages a cross-sectional study. Br J Phys Ther. 2018;22(1):70–76. doi: 10.1016/j.bjpt.2017.10.006
  9. Condon C, Cremin K. Static balance norms in children. Physiother Res Int. 2014;19(1):1–7. doi: 10.1002/pri.1549
  10. Roncesvalles MN, Schmitz C, Zedka M, et al. From egocentric to exocentric spatial orientation: development of posture control in bimanual and trunk inclination tasks. J Mot Behav. 2005;37(5):404–416. doi: 10.3200/JMBR.37.5.404-416
  11. Assaiante C, Mallau S, Viel S, et al. Development of postural control in healthy children: a functional approach. Neural Plast. 2005;12(2–3):109–118. doi: 10.1155/NP.2005.109
  12. Turon-Skrzypinska A, Uździcki A, Przybylski T, et al. Assessment of selected anthropometric parameters influence on balance parameters in children. Medicina. 2020;56(4):176. EDN: XAQCNB doi: 10.3390/medicina56040176
  13. Nikityuk IE. Comparative assessment of stabilometric diagnostic methods for adaptive capabilities of the postural control system in young athletes. Scientific review. Medical sciences. 2024;(2):10–15. EDN: EEWGIN doi: 10.17513/srms.1387
  14. Sinno S., Dumans G., Mallinson A., et al. Changes in the sensory weighting strategies in balance control throughout maturation in children. J Am Acad Audiol. 2021;32(2):122–136. EDN: ZADJPS doi: 10.1055/s-0040-1718706
  15. Daunoraviciene K, Ziziene J, Pauk J, et al. EMG Based analysis of gait symmetry in healthy children. Sensors. 2021;21(17):5983. EDN: GHHEZW doi: 10.3390/s21175983
  16. Vehrs PR, Uvacsek M, Johnson AW. Assessment of dysfunctional movements and asymmetries in children and adolescents using the functional movement screen – a narrative review. Int J Environ Res Public Health. 2021;18(23):12501. EDN: PWYYPY doi: 10.3390/ijerph182312501
  17. Schorderet C, Hilfiker R, Allet L. The role of the dominant leg while assessing balance performance. A systematic review and meta-analysis. Gait Posture. 2021;(84):66–78. EDN: QKLQYI doi: 10.1016/j.gaitpost.2020.11.008
  18. Paillard T, Noé F. Does monopedal postural balance differ between the dominant leg and the non-dominant leg? A review. Hum Mov Sci. 2020;74:102686. EDN: SWAPQS doi: 10.1016/j.humov.2020.102686
  19. Khudik SS, Chikurov AI, Voynich AL, et al. Functional asymmetry as a biological phenomenon associated with athletic performance. Tomsk State University Journal. 2017;(421):193–202. EDN: ZHYYMR doi: 10.17223/15617793/421/29
  20. Promsri A, Haid T, Federolf P. How does lower limb dominance influence postural control movements during single leg stance? Hum Mov Sci. 2018;58:165–174. doi: 10.1016/j.humov.2018.02.003
  21. Polyakov VM, Kolesnikova LI. Functional interhemispheric asymmetry of the brain in ontogenesis (literature review). Bulletin of the ESSC SB RAMS. 2005;43(5):206–215.
  22. Davidova SS, Sichev VS, Nazirova AA, et al. The problems of manual asymmetry. International Research Journal. 2022;126(12):11. EDN: RUNIXU doi: 10.23670/IRJ.2022.126.10
  23. Bhati P, Cheung TCK, Sithamparanathan G, et al. Striking a balance in sports: the interrelation between children’s sports experience, body size, and posture. AIMS Neurosci. 2022;9(2):288–302. EDN: UZATRK doi: 10.3934/Neuroscience.2022016
  24. Andreeva A, Melnikov A, Skvortsov D, et al. Postural stability in athletes: the role of sport direction. Gait Posture. 2021;89:120–125. EDN: YIPPFA doi: 10.1016/j.gaitpost.2021.07.005
  25. Theodorou E, Grivas TB, Hadjicharalambous M. The influence of the dominant leg in body asymmetries in children and adolescent male soccer players. Pediatr Rep. 2024;16(3):684–695. EDN: ZWWKLC doi: 10.3390/pediatric16030058
  26. Fort-Vanmeirhaeghe A, Bishop C, Montalvo AM, et al. Effects of exercise-induced neuromuscular fatigue on jump performance and lower-limb asymmetries in youth female team sport athletes. J Hum Kinet. 2023;89:19–31. EDN: ILTVZR doi: 10.5114/jhk/174073
  27. Cartón-Llorente A, Cardiel-Sánchez S, Molina-Molina A, et al. Bilateral asymmetry of spatiotemporal running gait parameters in u14 athletes at different speeds. Sports. 2024;12(5):117. EDN: OMJWJO doi: 10.3390/sports12050117
  28. López-Fernández J, García-Unanue J, Sánchez-Sánchez J, et al. Bilateral asymmetries assessment in elite and sub-elite male futsal players. Int J Environ Res Public Health. 2020;17(9):3169. EDN: PGXQZG doi: 10.3390/ijerph17093169
  29. Fort-Vanmeerhaeghe A, Bishop C, Buscà B, et al. Inter-limb asymmetries are associated with decrements in physical performance in youth elite team sports athletes. PLoS One. 2020;15(3):e0229440. EDN: GSWJXD doi: 10.1371/journal.pone.0229440
  30. Minamisawa T, Chiba N, Suzuki E. Association of bilateral lower limb coordination while standing with body sway control and aging. Somatosens Mot Res. 2021;38(4):294–302. EDN: LVWAYY doi: 10.1080/08990220.2021.1973402
  31. Ayteev MA, Rubanovich VB. Coordination training in 7–9-year-old judoists. Human Sport Medicine. 2023;23(3):142–149. EDN: XDKYVW doi: 10.14529/hsm230319
  32. Nikityuk IE, Garkavenko YuE, Savina MV. A two-platform method for studying the balance of the lower extremities in children with unilateral lesions of the proximal femur. Journal of New Medical Technologies. 2023;(2):19–23. EDN: KBRIWU doi: 10.24412/1609-2163-2023-2-19-23
  33. Rakhra SK, Singer JC. The effect of ageing on between-limb centre of pressure coordination in standing balance: is there evidence for reactive control challenges among older adults? Hum Mov Sci. 2022;86:103019. EDN: OBPRIH doi: 10.1016/j.humov.2022.103019
  34. Nikityuk IE, Botsarova SA, Semenov MG, et al. Postural balance impairment of the trunk in adolescents with mesial ratio of dentition before and after surgical treatment in the presence and absence of congenital cervical spine abnormalities. Pediatric Traumatology, Orthopaedics and Reconstructive Surgery. 2023;11(4):473–486. EDN: FOTKBC doi: 10.17816/PTORS606640

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Eyes open balance function quality in non-athletes. Graphs generated using a program that analyzes the velocity vectors of the general center of pressure: a, 6-year-old child; b, 8-year-old child; c, 11-year-old child; d, 15-year-old child. Balance function quality increases with age.

下载 (1MB)
3. Fig. 2. Average results of bilateral stabilometry in non-athletes across different age groups. Statokinesiograms of contralateral legs: a, 5–6 years of age; b, 7–10 years of age; c, 11–13 years of age; d, 14–16 years of age. CPL, center of pressure of the left foot; GCP, general center of pressure; CPR, center of pressure of the right foot. For legend details, see the main text.

下载 (973KB)
4. Fig. 3. Sagittal shifts of the centers of pressure of the contralateral legs in non-athletes, by age group: a, center of pressure of the left leg (CPL); b, center of pressure of the right leg (CPR).

下载 (182KB)
5. Fig. 4. Stabilometric parameters in the control group: a, correlation between the angle of oscillation aL of the center of pressure of the left leg and children’s age; b, correlation between the shift of the general center of pressure on the X-axis and children’s age; c, correlation between the angle of oscillation aL and the shift of the general center of pressure on the X-axis.

下载 (323KB)

版权所有 © Eco-Vector, 2025



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС77-54261 от 24 мая 2013 г.