血清生长因子浓度和超声信息含量对Ⅲ型成骨不全患儿骨关节系统结构状态研究的评估

封面


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

论证。在对成骨不全症患者进行治疗时,必须保证对长骨的结构状态和新陈代谢进行动态监测。在我们现有的文献中,几乎没有关于使用超声波检查来评估成骨不全症儿童骨骼系统的数据。 血清中TGF-β(转化生长因子β)超家族成员的表达增加已被描述为一系列先天性骨组织疾病,但尚未考虑用于III型成骨不全症患儿。

本研究旨在研究III型成骨不全症儿童血清中生长因子的浓度与健康儿童的对比情况,同时确定超声检查在评估III型成骨不全症儿童骨关节系统状况方面的信息量,并证实超声波用于该病症的可行性。

材料和方法。研究对象为患有III型成骨不全症的3-7岁儿童(12人)。血清中的骨矿物质代谢参数由Hitachi/BM 902分析仪(日本)测定,生长因子及其受体的含量由Thermofisher分析仪 (美国)通过酶免疫测定法测定。超声波检查在AVISUS日立(日本)仪器上进行。使用Attestat程序(I.P. Gaidyshev)进行统计处理。在拒绝正态分布的情况下,定量数据以样本的中位数和四分位数(Me [Q1;Q3])表示。在正态分布下,定量数据以M±σ表示,p<0.05。

结果。成骨不全患者的骨矿化程度和骨转换率均高于健康同龄人,胶原含量较低。成纤维细胞生长因子FGF-basic的变化最大;血管内皮生长因子受体VEGF-R3的含量减少,而血管内皮生长因子和VEGF-R2的含量却成倍增加。超声波检查可以发现股骨和胫骨的骨骺和骨骺以及髋关节和膝关节有畸形和多处骨折。

结论。负责激活破骨细胞生成的生长因子分泌失衡。负责抑制破骨细胞和活化成骨细胞的生长因子含量符合正常或有轻微变化。超声波检查在详细评估成骨不全症患者的骨骼和关节装置方面具有很高的信息量,因此这种非侵入性技术可推荐在该疾病中广泛应用。

全文:

受限制的访问

作者简介

Svetlana N. Luneva

National Ilizarov Medical Research Center for Traumatology and Orthopaedics

Email: luneva_s@mail.ru
ORCID iD: 0000-0002-0578-1964
SPIN 代码: 9572-2655

PhD, Dr. Sci. (Biol.), Professor

俄罗斯联邦, Kurgan

Tatyana I. Menshchikova

National Ilizarov Medical Research Center for Traumatology and Orthopaedics

编辑信件的主要联系方式.
Email: tat-mench@mail.ru
ORCID iD: 0000-0002-5244-7539
SPIN 代码: 2820-9120

PhD, Dr. Sci. (Biol.)

俄罗斯联邦, Kurgan

Anna M. Aranovich

National Ilizarov Medical Research Center for Traumatology and Orthopaedics

Email: aranovich_anna@mail.ru
ORCID iD: 0000-0002-7806-7083
SPIN 代码: 7277-6339

MD, PhD, Dr. Sci. (Med.), Professor

俄罗斯联邦, Kurgan

Evgeniia P. Vykhovanets

National Ilizarov Medical Research Center for Traumatology and Orthopaedics

Email: vykhovanets.eva@mail.ru
ORCID iD: 0000-0002-7661-9817
SPIN 代码: 7087-3146

MD, PhD, Cand. Sci. (Med.)

俄罗斯联邦, Kurgan

Kseniya P. Matveeva

National Ilizarov Medical Research Center for Traumatology and Orthopaedics

Email: k_paveleva1996@mail.ru
ORCID iD: 0009-0003-0246-2946

MD, PhD student

俄罗斯联邦, Kurgan

参考

  1. Grebennikova TA, Gavrilova O, Tiulpakov AN, et al. First description of a type V osteogenesis imperfecta clinical case with severe skeletal deformities caused by a mutation p.119C> T in IFITM5 gene in Russia. Osteoporosis and Bone Diseases. 2019;22(2):32–37. (In Russ.) doi: 10.14341/osteo12103
  2. Land C, Rauch F, Montpetit K, et al. Effect of intravenous pamidronate therapy on functional abilities and level of ambulation in children with osteogenesis imperfect. J Pediatr. 2006;148(4):456–460. doi: 10.1016/j.jpeds.2005.10.041
  3. Malygina AA, Grebennikova TA, Tiulpakov AN, et al. Osteogenesis imperfecta as a cause of death. Osteoporosis and Bone Diseases. 2018;21(1):23–27. (In Russ.) doi: 10.14341/osteo9733
  4. Glorieux FH. Osteogenesis imperfecta. Best Pract Res Clin Rheumatol. 2008;22(1):85–100. doi: 10.1016/j.berh.2007.12.012
  5. Michell C, Patel V, Amirfeyz R, et al. Osteogenesis imperfecta. Curr Orthop. 2007;21(3):236–241. doi: 10.1016/j.cuor.2007.04.003
  6. Sillence DO, Senn A, Danks DM. Genetic heterogeneity in osteogenesis imperfect. J Med Genet. 1979;16(2):101–116. doi: 10.1136/jmg.16.2.101
  7. Ignatovich ON, Namazova-Baranova LS, Мargieva ТV, et al. Osteogenesis imperfecta: diagnostic feature. Pediatric Pharmacology. 2018;15(3):224–232. (In Russ.) doi: 10.15690/pf.v15i3.1902
  8. Rossi V, Lee B, Marom R. Osteogenesis imperfecta: advancements in genetics and treatment. Curr Opin Pediatr. 2019;31(6):708–715. doi: 10.1097/MOP.0000000000000813
  9. Popkov AV, Karlov AV, Korkin AYa, et al. The outlooks of pathogenetic treatment of patients with the imperfect osteogenesis using elements of nano-technologies. Genij Ortopedii. 2009;(1):70–74. (In Russ.)
  10. Polyakova EYu, Shcheplyagina LA. Effect of bisphosphonate therapy on skeletal mineralization and body composition in children with osteogenesis imperfecta. Osteoporosis and Bone Diseases. 2020;23(2):130. (In Russ.)
  11. Karlov AV, Saprina TV, Kirillova NA, et al. Some clinical and pathophysiological problems and prospects of osteopenia surgical correction in patients with osteogenesis imperfect. Genij Ortopedii. 2008;(4):84–88. (In Russ.)
  12. Onopriyenko GA, Voloshin VP. Сurrent concepts in physiological and reparative osteogenesis. Al’manakh klinicheskoy meditsiny. 2017;45(2):79–93. (In Russ.) doi: 10.18786/2072-0505-2017-45-2-79-93
  13. Menshchikova TI, Menshchikov IN, Mal’tseva LV, et al. Specific characteristics of ultrasound diagnosing of primary and secondary coxarthrosis. Russian Electronic Journal of Radiology. 2019;9(1):75–88. (In Russ.) doi: 10.21569/2222-7415-2019-9-1-75-88
  14. Neretin AS, Menshchikova TI. Value of ultrasonography and radiography for the study of bone regeneration in lengthening of the fourth ray in brachymetatarsia. Foot Ankle Surg. 2021;27(4):432–438. doi: 10.1016/j.fas.2020.05.013
  15. Menschikova T, Aranovich A. Tibial lengthening in achondroplasia patients aged 6–9 years as the first stage of growth correction. Genij Ortopedii. 2021;27(3):366–371. doi: 10.18019/1028-4427-2021-27-3-366-371
  16. Palomo T, Vilaça T, Lazaretti-Castro M. Osteogenesis imperfecta: diagnosis and treatment. Curr Opin Endocrinol Diabetes Obes. 2017;24(6):381–388. doi: 10.1097/MED.0000000000000367
  17. Teng RJ, Wu TJ, Hsieh FJ. Cord blood level of insulin-like growth factor-1 and IGF binding protein-3 in monochorionic twins. J Formos Med Assoc. 2015;114(4):359–362. doi: 10.1016/j.jfma.2012.12.014
  18. Trejo P, Rauch F. Osteogenesis imperfecta in children and adolescents-new developments in diagnosis and treatment. Osteoporos Int. 2016;27(12):3427–3437. doi: 10.1007/s00198-016-3723-3
  19. Glants S. Mediko-biologicheskaya statistika. Moscow: Praktika; 1998. (In Russ.)
  20. Vasikaran S, Cooper C, Eastell R, et al. International Osteoporosis Foundation and International Federation of Clinical Chemistry and Laboratory Medicine position on bone marker standards in osteoporosis. Clin Chem Lab Med. 2011;49(8):1271–1274. doi: 10.1515/CCLM.2011.602
  21. Hofbauer LC, Kühne CA, Viereck V. The OPG/RANKL/RANK system in metabolic bone diseases. J Musculoskelet Neuronal Interact. 2004;4(3):268–275.
  22. Wu M, Chen G, Li YP. TGF-β and BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease. Bone Res. 2016;4. doi: 10.1038/boneres.2016.9
  23. Gebken J, Brenner R, Feydt A, et al. Increased cell surface expression of receptors for transforming growth factor-beta on osteoblasts from patients with osteogenesis imperfecta. Pathobiology. 2000;68(3):106–112. doi: 10.1159/000055910
  24. Ivanter EV, Korsov AV. Elementarnaya biometriya: uchebnoe posobie. Petrozavodsk: PetrGU; 2013. (In Russ.)
  25. Cho TJ, Ko JM, Kim H, et al. Management of osteogenesis imperfecta: a multidisciplinary comprehensive approach. Clin Orthop Surg. 2020;12(4):417–429. doi: 10.4055/cios20060
  26. Kivirikko KI. Collagens and their abnormalities in a wide spectrum of diseases. Ann Med. 1993;25(2):113–126. doi: 10.3109/07853899309164153
  27. Byers PH, Steiner RD. Osteogenesis imperfecta. Annu Rev Med. 1992;43:269–282. doi: 10.1146/annurev.me.43.020192.001413
  28. Prockop DJ. Mutations that alter the primary structure of type I collagen. The perils of a system for generating large structures by the principle of nucleated growth. J Biol Chem. 1990;265(26):15349–15352.
  29. Shevtsov VI, Popkov DA, Desyatnichenko KS, et al. Biochemical markers of osteogenesis activity during femoral elongation in automatic mode of high division. Genij Ortopedii. 1999;(1):35–39. (In Russ.)
  30. Landis WJ, Song MJ, Leith A, et al. Mineral and organic matrix interaction in normally calcifying tendon visualized in three dimensions by high-voltage electron microscopic tomography and graphic image reconstruction. J Struct Biol. 1993;110(1):39–54. doi: 10.1006/jsbi.1993.1003
  31. Fratzl-Zelman N, Schmidt I, Roschger P, et al. Mineral particle size in children with osteogenesis imperfecta type I is not increased independently of specific collagen mutations. Bone. 2014;60:122–128. doi: 10.1016/j.bone.2013.11.023
  32. Cortés Blanco A, Labarta Aizpún JI, Ferrández Longás A, et al. Valores de referencia de IGF-I, IGFBP-1, IGFBP-3 y osteocalcina en niños sanos zaragozanos [Reference values for IGF-I, IGFBP-1, IGFBP-3 and osteocalcin in healthy children in Zaragoza]. An Esp Pediatr. 1999;51(2):167–174. (In Span.)
  33. Loffredo FS, Steinhauser ML, Jay SM, et al. Growth differentiation factor 11 is a circulating factor that reverses age-related cardiac hypertrophy. Cell. 2013;53(4):828–839. doi: 10.1016/j.cell.2013.04.015
  34. Erickson CB, Payne KA. inductive signals and progenitor fates during osteogenesis. In: Encyclopedia of tissue and regenerative medicine. Ed. by R.L. Reis. 2019. P. 395–404.
  35. Popkov DA, Ryabykh SO. Osteogenesis Imperfecta from diagnosis to treatment. Nova Science Pub. Inc.; 2022. doi: 10.52305/BNDY1848

补充文件

附件文件
动作
1. JATS XML
2. Fig. 2. Sonogram of the hip joint of patient K (7 years old) with type III osteogenesis imperfecta. Standard scanning reveals a spherical femoral head with uneven and heterogeneous contour of the subchondral plate

下载 (84KB)
3. Fig. 1. Sonograms of pathologic fractures of the femur and tibia of patient N., 7 years old, with type III osteogenesis imperfecta: a, disruption of the cortical plate contour integrity is visualized at the apex of the femur deformity. Small clumps measuring 1–1.2 mm are located between the ends of the fragments. The acoustic density in the fracture zone is 77.3 units (rectangle); b, tibial metaphysis; discontinuous contour is visualized. An area with multiple fractures is shown. The acoustic densities are 79.4, 88.4, and 100.5 units (rectangle)

下载 (154KB)
4. Fig. 3. Sonograms of the knee joint of patient K (7 years old) with type III osteogenesis imperfecta: a, the angle of the patellar bed at maximal flexion is smoothed, with uneven hyaline cartilage, 1.5–2.2–2.8 mm thick; b, uneven contour of the subchondral plate of the tibia with small clumpy inclusions

下载 (138KB)

版权所有 © Эко-Вектор, 2023

许可 URL: https://eco-vector.com/for_authors.php#07

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС77-54261 от 24 мая 2013 г.


##common.cookie##