Physiology of sperm motility

Cover Page
Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access


The present study gives an overview of the current knowledge on mechanisms providing sperm motility and forward progression. The role of multiple mechanic and chemical factors is described.

Full Text

Restricted Access

About the authors

Karen Ashotovich Aloyan

First St.-Petersburg State I. P. Pavlov Medical University

internship doctor, Urology Department

Artem Viktorovich Matveyev

First St.-Petersburg State I. P. Pavlov Medical University

internship doctor, Urology Department

Vladimir Vladimirovich Morev

International reproductive medicine center


Igor Alekseyevich Korneyev

First St.-Petersburg State I. P. Pavlov Medical University

doctor of medical science, professor. Department of Urology


  1. Mariano G. Buffone, Takashi W. Ijiri, Wenlei Cao et al. Heads or tails? structural events and molecular mechanisms that promote mammalian sperm acrosomal exocytosis and motility // Mol Reprod Dev. 2012. Vol. 79, N 1. P. 4-18.
  2. Kazuo I. Sperm flagella: comparative and phylogenetic perspectives of protein components // Molecular Human Reproduction. 2011. Vol. 17, N 8. P. 524-538.
  3. Ford W. C. L. Glycolysis and sperm motility: does a spoonful of sugar help the flagellum go round? // Human Reproduction Update. 2006. Vol. 12, N 3. P. 269-274.
  4. Vijayaraghavan S., Stephens D.T., Trautman K. et al. Sperm motility development in the epididymis is associated with decreased glycogen synthase kinase-3 and protein phosphatase 1 activity // Biol. Reprod. 1996. Vol. 54, N 3. P. 709-718.
  5. Somanath P. R., Jack S. L., Vijayaraghavan S. Changes in sperm glycogen synthase kinase-3 serine phosphorylation and activity accompany motility initiation and stimulation // Journal Androl. 2004. Vol. 25, N 4. P. 605-617.
  6. Ho H.-C., Suarez S. S. Characterization of the intracellular calcium store at the base of the sperm flagellum that regulates hyperactivated motility // Biol. Reprod. 2003. Vol. 68, N 5. P. 1590-1596.
  7. Costello S., Michelangeli F., Nash K. et al. Ca2+-stores in sperm: their identities and functions // Reproduction. 2009. Vol. 138. P. 425-437.
  8. Alberto Darszon, Takuya Nishigaki, Carmen Beltran et al. Calcium channels in the development, maturation, and function of spermatozoa // Physiol Rev. 2011. Vol. 91. P. 1305-1355.
  9. Carlson A. E., Hille B., Babcock D. F. External Ca2+ acts upstream of adenylyl cyclase SACY in the bicarbonate signaled activation of sperm motility // Dev. Biol. 2007. Vol. 312. P. 183-192.
  10. Susan S. Suarez. Control of hyperactivation in sperm // Human Reproduction Update. 2008. Vol. 14, N 6. P. 647-657.
  11. Pastor-Soler N., Beaulieu V., Litvin T. N. et al. Bicarbonate-regulated adenylyl cyclase (sAC) is a sensor that regulates pH-dependent V-ATPase recycling // J. Biol. Chem. 2003. Vol. 278, N 49. P. 49 523-49 529.
  12. Shum W. W. C., Da Silva N., Brown D. et al. Regulation of luminal acidification in the male reproductive tract via cell-cell crosstalk // J. Exp. Biol. 2009. Vol. 212. P. 1753-1761.
  13. Ho H.-C., Granish K. A., Suarez S. S. Hyperactivated motility of bull sperm is triggered at the axoneme by Ca2þ and not cAMP // Dev Biol. 2002. Vol. 250. P. 208-217.
  14. Kirichok Y., Navarro B., Clapham D. E. Whole-cell patch-clamp measurements of spermatozoa reveal an alkaline-activated Ca2þ channel // Nature. 2006. Vol. 439. P. 737-740.
  15. Marquez B., Suarez S. S. Bovine sperm hyperactivation is promoted by alkaline-stimulated Ca2þ influx // Biol. Reprod. 2007. Vol. 76. P. 660-665.
  16. Wang D., Hu J., Bobulescu I. A. et al. A sperm-specific Na+/H+ exchanger (sNHE) is critical for expression and in vivo bicarbonate regulation of the soluble adenylyl cyclase (sAC) // Proc. Natl. Acad. Sci. U. S.A. 2007. Vol. 104. P. 9325-9330.
  17. Wang D., King S. M., Quill T. A. et al. A new sperm-specific Na+/H+ exchanger required for sperm motility and fertility // Nat. Cell Biol. 2003. Vol. 5. P. 1117-1122.
  18. Martínez-López P., Santi C. M., Treviño C. L. et al. Mouse sperm K+ currents stimulated by pH and cAMP possibly coded by Slo3 channels // Biochem. Biophys. Res. Commun. 2009. Vol. 381. P. 204-209.
  19. Santi C. M., Martínez-López P., de la Vega-Beltrán J. L. et al. The SLO3 sperm-specific potassium channel plays a vital role in male fertility // FEBS Letters. 2010. Vol. 584. P. 1041-1046.
  20. Zeng X-H., Yang C., Kim S. T. et al. Deletion of the Slo3 gene abolishes alkalization- activated K+ current in mouse spermatozoa // Proceedings of the National Academy of Sciences. 2011. Vol. 108. P. 5879-5884.
  21. Iqbal M., Shivaji S., Vijayasarathy S. et al. Synthetic peptides as chemoattractants for bull spermatozoa structure activity correlations // Biochem Biophys Res Commun. 1980. Vol. 96. P. 235-242.
  22. Zamir N., Riven-Kreitman R., Manor M. et al. Atrial natriuretic peptide attracts human spermatozoa in vitro // Biochem Biophys Res Commun. 1993. Vol. 197. P. 116-122.
  23. Villanueva-Diaz C., Arias-Martinez J., Bermejo-Martinez L. et al. Progesterone induces human sperm chemotaxis // Fertil Steril. 1995. Vol. 64. P. 1183-1188.
  24. Isobe T., Minoura H., Tanaka K. et al. The effect of RANTES on human sperm chemotaxis // Hum. Reprod. 2002. Vol. 17. P. 1441-1446.
  25. Spehr M., Gisselmann G., Poplawski A. et al. Identification of a testicular odorant receptor mediating human sperm chemotaxis // Science. 2003. Vol. 299. P. 2054-2058.
  26. Fukuda N., Yomogida K., Okabe M. et al. Functional characterization of a mouse testicular olfactory receptor and its role in chemosensing and in regulation of sperm motility // Journal Cell Sci. 2004. Vol. 117. P. 5835-5845.
  27. Cosson M. P., Carre´D, Cosson J. Sperm chemotaxis in siphonophores. II. Calcium-dependent asymmetrical movement of spermatozoa induced by attractant // J. Cell Sci. 1984. Vol. 68. P. 163-181.
  28. Spehr M., Schwane K., Riffell J. A. et al. Particulate adenylate cyclase plays a key role in human sperm olfactory receptor-mediated chemotaxis // J. Biol. Chem. 2004. Vol. 279. P. 40 194-40 203.
  29. David A., Vilensky A., Nathan H. et al. Temperature changes in the different parts of the rabbit’s oviduct // Int. J. Gynaecol Obstet. 1972. Vol. 10. P. 52-56.
  30. Hunter R. H. F., Nichol R. A preovulatory temperature gradient between the isthmus and the ampulla of pig oviducts during the phase of sperm storage // J. Reprod. Fert. 1986. Vol. 77. P. 599-606.
  31. Hunter R. H. F. Sperm-epithelial interactions in the isthmus and ampulla of the Fallopian tubes and their ovarian control // Gamettes: Develoment and Function, Serono Symposia Rome. 1998. P. 355-367.
  32. Bahat A., Tur-Kaspa I., Gakamsky A. et al. Thermotaxis of mammalian sperm cells: a potential navigation mechanism in the female genital tract // Nature Med. 2003. Vol. 9. P. 149-150.
  33. Cohen-Dayag A., Ralt D., Tur-Kaspa I. et al. Sequential acquisition of chemotactic responsiveness by human spermatozoa // Biol. Reprod. 1994. Vol. 50. P. 786-790.
  34. Cohen-Dayag A., Tur-Kaspa I., Dor J. et al. Sperm capacitation in humans is transient and correlates with chemotactic responsiveness to follicular factors // Proc. Natl. Acad. Sci. USA. 1995. Vol. 92. P. 11 039-11 043.
  35. Fabro G., Rovasio R. A., Civalero S. et al. Chemotaxis of capacitated rabbit spermatozoa to follicular fluid revealed by a novel directionality-based assay // Biol. Reprod. 2002. Vol. 67. P. 1565-1571.
  36. Smith D.J., Gaffney E.A., Gadhêla H. et al. Bend propagation in the flagella of migrating human sperm, and its modulation by viscosity // Cell Motil Cytoskelet. 2009. Vol. 66. P. 220-236.
  37. Miki K., Clapham D. E. Rheotaxis guides mammalian sperm // Curr Biol. 2013. Vol. 23, N 6. P. 443-452.
  38. Rossato M et al. Role of seminal osmolarity in the regulation of human sperm motility // International Journal of Andrology. 2002. Vol. 25. P. 230-235.
  39. Auger J., Eustache F., Andersen A. G. et al. Sperm morphological defects related to environment, lifestyle and medical history of 1001 male partners of pregnant women from four European cities // Hum. Reprod. 2001. Vol. 16. P. 2710-2717.
  40. Yousef M. I., El-morsey A. M., Hassan M. S. Aluminium-induced deterioration in reproductive performance and seminal plasma biochemistry of male rabbits: protective role of ascorbic acid // Toxicology. 2005. Vol. 215. P. 97-107.
  41. Kaludin I., Georgiev G. T., Marinov M. F. Zinc and manganese transport in ram sex cells // Vet. Med. Nauki. 1983. Vol. 20. P. 91-96.
  42. Wong W. Y., Flik G., Groenen P. M. et al. The impact of calcium, magnesium, zinc, copper in blood and seminal plasma on semen parameters in men // Reprod Toxicol. 2001. Vol. 15. P. 131-136.
  43. Pasternak K, Floriańczyk B. Selected Metals and Their Role in the Functioning of Human Body. Wyd. Folium, lublin, Poland, 1995.
  44. Kabata-Pendias A., Pendias H. The Biogeochemistry of Trace Elements. Wyd. Nauk. PWN, Warszawa, Poland, 1999.
  45. Semczuk M., Kurpisz M. The Andrology. Wyd. Lek. PZWL, Warszawa, 2006.
  46. Kabata-Pendias A., Mukherjee A. B. Trace Elements from Soil to Human. Springer, Heidelberg, Germany, 2007.



Abstract - 520

PDF (Russian) - 435


Article Metrics

Metrics Loading ...



Copyright (c) 2013 Aloyan K.A., Matveyev A.V., Morev V.V., Korneyev I.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies