Reprogramming the immune response in prostate cancer treatment
- Authors: Enikeeva K.I.1, Gainullina D.K.1, Shmelkova P.N.1, Sharifyanova Y.V.1, Akramova E.R.1, Kabirov I.R.1, Pavlov V.N.1
-
Affiliations:
- Bashkir State Medical University
- Issue: Vol 15, No 1 (2025)
- Pages: 75-88
- Section: Reviews
- Submitted: 17.01.2025
- Accepted: 06.03.2025
- Published: 07.05.2025
- URL: https://journals.eco-vector.com/uroved/article/view/646326
- DOI: https://doi.org/10.17816/uroved646326
- ID: 646326
Cite item
Abstract
Prostate cancer is the most common malignant disease among men, accounting for approximately 29% of all cancer cases in males. Recent research in the prostate cancer treatment has shown that immunotherapy can significantly improve the quality of treatment, extend remission, and enhance patient survival. However, the tumor microenvironment can negatively affect the efficacy of immunotherapy. Insufficient T-cell infiltration, immunosuppressive microenvironment, tumor-associated T and B lymphocytes, macrophages, and myeloid-derived suppressor cells substantially reduce the efficacy of immunotherapy. Current immunotherapy strategies include vaccine-based approaches, immune checkpoint inhibitors, CAR T-cell therapy, T-cell activators, etc. This review highlights the key therapeutic approaches aimed at reprogramming the immune response in prostate cancer, including nucleic acid-based vaccines, peptide-based vaccines, viral vector-based vaccines, immune cell-based vaccines, checkpoint inhibitors, CAR T-cell therapy, and bispecific antibodies. It also presents clinical and preclinical data on these therapies. Current immunotherapy approaches demonstrate significant potential in activating and directing the immune response against tumor cells. However, further research is required to better understand the underlying mechanisms and to develop new therapeutic strategies.
Full Text

About the authors
Kadriia I. Enikeeva
Bashkir State Medical University
Author for correspondence.
Email: kienikeeva@bashgmu.ru
ORCID iD: 0000-0002-5995-2124
SPIN-code: 8166-7147
Cand. Sci. (Pharmacy)
Russian Federation, UfaDiana Kh. Gainullina
Bashkir State Medical University
Email: gaynullina_d@inbox.ru
ORCID iD: 0009-0002-9174-4824
SPIN-code: 5116-7785
Russian Federation, Ufa
Polina N. Shmelkova
Bashkir State Medical University
Email: shmelkova_polina@mail.ru
ORCID iD: 0009-0001-3298-3895
SPIN-code: 5303-0020
Russian Federation, Ufa
Yuliya V. Sharifyanova
Bashkir State Medical University
Email: yuvsharifyanova@bashgmu.ru
ORCID iD: 0009-0000-8184-6072
SPIN-code: 2759-2939
Russian Federation, Ufa
Elina R. Akramova
Bashkir State Medical University
Email: elinaletters@gmail.com
ORCID iD: 0009-0000-1289-9365
SPIN-code: 3326-8909
Russian Federation, Ufa
Ildar R. Kabirov
Bashkir State Medical University
Email: ildarkabirov@gmail.com
ORCID iD: 0000-0002-9581-8918
SPIN-code: 6542-9231
MD, Cand. Sci. (Medicine)
Russian Federation, UfaValentin N. Pavlov
Bashkir State Medical University
Email: pavlov@bashgmu.ru
ORCID iD: 0000-0003-2125-4897
SPIN-code: 2799-6268
MD, Dr. Sci. (Medicine), Professor, Academician of the Russian Academy of Sciences
Russian Federation, UfaReferences
- Erratum to “Cancer statistics, 2024.” CA A Cancer J Clinicians. 2024;74(2):203–203. doi: 10.3322/caac.21830
- Devasia TP, Mariotto AB, Nyame YA, Etzioni R. Estimating the number of men living with metastatic prostate cancer in the united states. Cancer Epidemiol Biomarkers Prev. 2023;32(5):659–665. doi: 10.1158/1055-9965.EPI-22-1038
- Zhang Z, Tian A, Che J, et al. Application and optimization of prostate-specific antigen screening strategy in the diagnosis of prostate cancer: a systematic review. Front Oncol. 2024;13:1320681. doi: 10.3389/fonc.2023.1320681
- Chen Z, Hu T, Zhou J, et al. Overview of tumor immunotherapy based on approved drugs. Life Sci. 2024;340:122419. doi: 10.1016/j.lfs.2024.122419
- Chen L, Xu Y-X, Wang Y-S, et al. Prostate cancer microenvironment: multidimensional regulation of immune cells, vascular system, stromal cells, and microbiota. Mol Cancer. 2024;23(1):229. doi: 10.1186/s12943-024-02137-1
- King A. Could immunotherapy finally break through in prostate cancer? Nature. 2022;609(7927):S42–S44. doi: 10.1038/d41586-022-02861-y
- De Velasco MA, Kura Y, Fujita K, Uemura H. Moving toward improved immune checkpoint immunotherapy for advanced prostate cancer. Int J Urol. 2024;31(4):307–324. doi: 10.1111/iju.15378
- Graff JN, Hoimes CJ, Gerritsen WR, et al. Pembrolizumab plus enzalutamide for metastatic castration-resistant prostate cancer progressing on enzalutamide: cohorts 4 and 5 of the phase 2 KEYNOTE-199 study. Prostate Cancer Prostatic Dis. 2024. doi: 10.1038/s41391-024-00865-5
- He J, Wu J, Li Z, et al. Immunotherapy vaccines for prostate cancer treatment. Cancer Med. 2024;13(20):e70294. doi: 10.1002/cam4.70294
- Madan RA, Antonarakis ES, Drake CG, et al. Putting the pieces together: completing the mechanism of action jigsaw for sipuleucel-T. J Natl Cancer Inst. 2020;112(6):562–573. doi: 10.1093/jnci/djaa021
- Wolf P, Alzubi J, Gratzke C, Cathomen T. The potential of CAR T cell therapy for prostate cancer. Nat Rev Urol. 2021;18(9):556–571. doi: 10.1038/s41585-021-00488-8
- Nair SS, Weil R, Dovey Z, et al. The tumor microenvironment and immunotherapy in prostate and bladder cancer. Urol Clin N Am. 2020;47(4S):e17–e54. doi: 10.1016/j.ucl.2020.10.005
- Palano MT, Gallazzi M, Cucchiara M, et al. The tumor innate immune microenvironment in prostate cancer: an overview of soluble factors and cellular effectors. Explor Target Anti-tumor Ther. 2022:694–718. doi: 10.37349/etat.2022.00108
- Cioni B, Zwart W, Bergman AM. Androgen receptor moonlighting in the prostate cancer microenvironment. Endocr Relat Cancer. 2018;25(6):R331–R349. doi: 10.1530/ERC-18-0042
- Niu Y, Chang T-M, Yeh S, et al. Differential androgen receptor signals in different cells explain why androgen-deprivation therapy of prostate cancer fails Oncogene. 2010;29(25):3593–3604. doi: 10.1038/onc.2010.121
- Tang Q, Cheng B, Dai R, Wang R. The role of androgen receptor in cross talk between stromal cells and prostate cancer epithelial cells. Front Cell Dev Biol. 2021;9:729498. doi: 10.3389/fcell.2021.729498
- ChallaSivaKanaka S, Vickman RE, Kakarla M, et al. Fibroblast heterogeneity in prostate carcinogenesis. Cancer Lett. 2022;525:76–83. doi: 10.1016/j.canlet.2021.10.028
- Owen JS, Clayton A, Pearson HB. Cancer-associated fibroblast heterogeneity, activation and function: implications for prostate cancer. Biomolecules. 2022;13(1):67. doi: 10.3390/biom13010067
- Vickman RE, Broman MM, Lanman NA, et al. Heterogeneity of human prostate carcinoma-associated fibroblasts implicates a role for subpopulations in myeloid cell recruitment. Prostate. 2020;80(2):173–185. doi: 10.1002/pros.23929
- Karpisheh V, Mousavi SM, Naghavi Sheykholeslami P, et al. The role of regulatory T cells in the pathogenesis and treatment of prostate cancer. Life Sci. 2021;284:119132. doi: 10.1016/j.lfs.2021.119132
- Sanaei M-J, Salimzadeh L, Bagheri N. Crosstalk between myeloid-derived suppressor cells and the immune system in prostate cancer. J Leukoc Biol. 2020;107(1):43–56. doi: 10.1002/JLB.4RU0819-150RR
- Subudhi SK, Siddiqui BA, Aparicio AM, et al. Combined CTLA-4 and PD-L1 blockade in patients with chemotherapy-naïve metastatic castration-resistant prostate cancer is associated with increased myeloid and neutrophil immune subsets in the bone microenvironment. J Immunother Cancer. 2021;9(10):e002919. doi: 10.1136/jitc-2021-002919
- Stultz J, Fong L. How to turn up the heat on the cold immune microenvironment of metastatic prostate cancer. Prostate Cancer Prostatic Dis. 2021;24(3):697–717. doi: 10.1038/s41391-021-00340-5
- Liu Z, Lv J, Dang Q, et al. Engineering neoantigen vaccines to improve cancer personalized immunotherapy. Int J Biol Sci. 2022;18(15):5607–5623. doi: 10.7150/ijbs.76281
- Miao L, Zhang Y, Huang L. mRNA vaccine for cancer immunotherapy. Mol Cancer. 2021;20(1):41. doi: 10.1186/s12943-021-01335-5
- Hawlina S, Zorec R, Chowdhury HH. Potential of personalized dendritic cell-based immunohybridoma vaccines to treat prostate cancer. Life. 2023;13(7):1498. doi: 10.3390/life13071498
- Gálvez-Cancino F, López E, Menares E, et al. Vaccination-induced skin-resident memory CD8+ T cells mediate strong protection against cutaneous melanoma. OncoImmunology. 2018;7(7):e1442163. doi: 10.1080/2162402X.2018.1442163
- Suschak JJ, Williams JA, Schmaljohn CS. Advancements in DNA vaccine vectors, non-mechanical delivery methods, and molecular adjuvants to increase immunogenicity. Hum Vacc Immunother. 2017;13(12):2837–2848. doi: 10.1080/21645515.2017.1330236
- Bafaloukos D, Gazouli I, Koutserimpas C, Samonis G. Evolution and progress of mRNA vaccines in the treatment of melanoma: Future prospects. Vaccines. 2023;11(3):636. doi: 10.3390/vaccines11030636
- Rausch S, Schwentner C, Stenzl A, Bedke J. mRNA vaccine CV9103 and CV9104 for the treatment of prostate cancer. Hum Vacc Immunother. 2014;10(11):3146–3152. doi: 10.4161/hv.29553
- Zanetti M. A second chance for telomerase reverse transcriptase in anticancer immunotherapy. Nat Rev Clin Oncol. 2017;14(2):115–128. doi: 10.1038/nrclinonc.2016.67
- Lilleby W, Gaudernack G, Brunsvig PF, et al. Phase I/IIa clinical trial of a novel hTERT peptide vaccine in men with metastatic hormone-naive prostate cancer. Cancer Immunol Immunother. 2017;66(7):891–901. doi: 10.1007/s00262-017-1994-y
- Bouard D, Alazard-Dany N, Cosset F. Viral vectors: from virology to transgene expression. Br J Pharmacol. 2009;157(2):153–165. doi: 10.1038/bjp.2008.349
- Lin MJ, Svensson-Arvelund J, Lubitz GS, et al. Cancer vaccines: the next immunotherapy frontier. Nat Cancer. 2022;3(8):911–926. doi: 10.1038/s43018-022-00418-6
- Higano CS, Schellhammer PF, Small EJ, et al. Integrated data from 2 randomized, double-blind, placebo-controlled, phase 3 trials of active cellular immunotherapy with sipuleucel-T in advanced prostate cancer. Cancer. 2009;115(16):3670–3679. doi: 10.1002/cncr.24429
- Vogelzang NJ, Beer TM, Gerritsen W, et al. Efficacy and safety of autologous dendritic cell–based immunotherapy, docetaxel, and prednisone vs placebo in patients with metastatic castration-resistant prostate cancer: The VIABLE phase 3 randomized clinical trial. JAMA Oncol. 2022;8(4):546–542. doi: 10.1001/jamaoncol.2021.7298
- Haque Chowdhury H, Hawlina S, Gabrijel M, et al. Survival of castration-resistant prostate cancer patients treated with dendritic-tumor cell hybridomas is negatively correlated with changes in peripheral blood CD56bright CD16– natural killer cells. Clin Transl Med. 2021;11(8):e505. doi: 10.1002/ctm2.505
- Cheever MA, Higano CS. PROVENGE (sipuleucel-T) in prostate cancer: The first FDA-approved therapeutic cancer vaccine. Clin Cancer Res. 2011;17(11):3520–3526. doi: 10.1158/1078-0432.CCR-10-3126
- Meng L, Yang Y, Mortazavi A, Zhang J. Emerging immunotherapy approaches for treating prostate cancer. Int J Mol Sci. 2023;24(18):14347. doi: 10.3390/ijms241814347
- Mustafina DA, Bagautdinova AN, Zinatullina MM, et al. The role of immune checkpoint inhibitors in the development and treatment of infectious processes. Journal of Clinical Practice. 2024;15(1):91–106. doi: 10.17816/clinpract627504 EDN: TYGZSH
- Shubnikova EV, Bukatina TM, Velts NYu, et al. Immune response checkpoint inhibitors: new risks of a new class of antitumor agents. Safety and Risk of Pharmacotherapy. 2020;8(1):9–22. doi: 10.30895/2312-7821-2020-8-1-9-22 EDN: EEVXRX
- Farhangnia P, Ghomi SM, Akbarpour M, Delbandi AA. Bispecific antibodies targeting CTLA-4: game-changer troopers in cancer immunotherapy. Front Immunol. 2023;14:1155778. doi: 10.3389/fimmu.2023.1155778
- Hossen MM, Ma Y, Yin Z, et al. Current understanding of CTLA-4: from mechanism to autoimmune diseases. Front Immunol. 2023;14:1198365. doi: 10.3389/fimmu.2023.1198365
- Salmaninejad A, Valilou SF, Shabgah AG, et al. PD-1/PD-L1 pathway: Basic biology and role in cancer immunotherapy. J Cell Physiol. 2019;234(10):16824–16837. doi: 10.1002/jcp.28358
- Lotfinejad P, Kazemi T, Mokhtarzadeh A, et al. PD-1/PD-L1 axis importance and tumor microenvironment immune cells. Life Sci. 2020;259:118297. doi: 10.1016/j.lfs.2020.118297
- Alaia C, Boccellino M, Zappavigna S, et al. Ipilimumab for the treatment of metastatic prostate cancer. Expert Opin Biol Ther. 2018;18(2):205–213. doi: 10.1080/14712598.2018.1420777
- Pavlov AYu, Dzidzaria AG, Gafanov RA, et al. Metastatic castration-resistant prostate cancer and immune checkpoint inhibitors. Cancer Urology. 2024;20(1):153–163. doi: 10.17650/1726-9776-2024-20-1-153-163 EDN: IUQTVF
- Wee CE, Costello BA, Orme JJ, et al. Chemotherapy with atezolizumab for small cell or neuroendocrine carcinoma of the prostate: A single institution experience. Prostate. 2021;81(13):938–943. doi: 10.1002/pros.24189
- Rodriguez-Vida A, Maroto P, Font A, et al. Safety and efficacy of avelumab plus carboplatin in patients with metastatic castration-resistant prostate cancer in an open-label Phase Ib study. Br J Cancer. 2023;128(1):21–29. doi: 10.1038/s41416-022-01991-4
- Karzai F, VanderWeele D, Madan RA, et al. Activity of durvalumab plus olaparib in metastatic castration-resistant prostate cancer in men with and without DNA damage repair mutations. J Immunother Cancer. 2018;6(1):141. doi: 10.1186/s40425-018-0463-2
- Knochelmann HM, Smith AS, Dwyer CJ, et al. CAR T Cells in solid tumors: Blueprints for building effective therapies. Front Immunol. 2018;9:1740. doi: 10.3389/fimmu.2018.01740
- Sterner RC, Sterner RM. CAR-T cell therapy: current limitations and potential strategies. Blood Cancer J. 2021;11(4):69. doi: 10.1038/s41408-021-00459-7
- Fischer JW, Bhattarai N. CAR-T cell therapy: Mechanism, management, and mitigation of inflammatory toxicities. Front Immunol. 2021;12:693016. doi: 10.3389/fimmu.2021.693016
- Deng Q, Han G, Puebla-Osorio N, et al. Characteristics of anti-CD19 CAR T cell infusion products associated with efficacy and toxicity in patients with large B cell lymphomas. Nat Med. 2020;26(12): 1878–1887. doi: 10.1038/s41591-020-1061-7
- Haslauer T, Greil R, Zaborsky N, Geisberger R. CAR T-cell therapy in hematological malignancies. Int J Mol Sci. 2021;22(16):8996. doi: 10.3390/ijms22168996
- Chohan KL, Siegler EL, Kenderian SS. CAR-T cell therapy: the efficacy and toxicity balance. Curr Hematol Malig Rep. 2023;18(2):9–18. doi: 10.1007/s11899-023-00687-7
- Zhang G, Wang Y, Lu S, et al. Molecular understanding and clinical outcomes of CAR T cell therapy in the treatment of urological tumors. Cell Death Dis. 2024;15(5):359. doi: 10.1038/s41419-024-06734-2
- Schepisi G, Cursano MC, Casadei C, et al. CAR-T cell therapy: a potential new strategy against prostate cancer. J Immunother Cancer. 2019;7(1):258. doi: 10.1186/s40425-019-0741-7
- Dorff TB, Blanchard MS, Adkins LN, et al. PSCA-CAR T cell therapy in metastatic castration-resistant prostate cancer: a phase 1 trial. Nat Med. 2024;30(6):1636–1644. doi: 10.1038/s41591-024-02979-8
- Santourlidis S, Araúzo-Bravo MJ, Erichsen L, Bendhack ML. Epigenetics meets CAR-T-cell therapy to fight cancer. Cancers. 2024;16(10):1941. doi: 10.3390/cancers16101941
- Hubert RS, Vivanco I, Chen E, et al. STEAP: A prostate-specific cell-surface antigen highly expressed in human prostate tumors. PNAS USA. 1999;96(25):14523–14528. doi: 10.1073/pnas.96.25.14523
- Bhatia V, Kamat NV, Pariva TE, et al. Targeting advanced prostate cancer with STEAP1 chimeric antigen receptor T cell and tumor-localized IL-12 immunotherapy. Nat Commun. 2023;14(1):2041. doi: 10.1038/s41467-023-37874-2
- Zanvit P, Van Dyk D, Fazenbaker C, et al. Antitumor activity of AZD0754, a dnTGFβRII-armored, STEAP2-targeted CAR-T cell therapy, in prostate cancer. J Clin Investig. 2023;133(22):e169655. doi: 10.1172/JCI169655
- Kloss CC, Condomines M, Cartellieri M, et al. Combinatorial antigen recognition with balanced signaling promotes selective tumor eradication by engineered T cells. Nat Biotechnol. 2013;31(1):71–75. doi: 10.1038/nbt.2459
- Lindo L, Wilkinson LH, Hay KA. Befriending the hostile tumor microenvironment in CAR T-cell therapy. Front Immunol. 2021;11:618387. doi: 10.3389/fimmu.2020.618387
- Saleh OM, Albakri KA, Alabdallat YJ, et al. The safety and efficacy of CAR-T cells in the treatment of prostate cancer: review. Biomarkers. 2022;27(1):22–34. doi: 10.1080/1354750X.2021.2016973
- Palecki J, Bhasin A, Bernstein A, et al. T-Cell redirecting bispecific antibodies: a review of a novel class of immuno-oncology for advanced prostate cancer. Cancer Biol Ther. 2024;25(1):2356820. doi: 10.1080/15384047.2024.2356820
- Simão DC, Zarrabi KK, Mendes JL, et al. Bispecific T-cell engagers therapies in solid tumors: Focusing on prostate cancer. Cancers. 2023;15(5):1412. doi: 10.3390/cancers15051412
- Hummel H-D, Kufer P, Grüllich C, et al. Pasotuxizumab, a Bite® immune therapy for castration-resistant prostate cancer: Phase I, dose-escalation study findings. Immunotherapy. 2021;13(2):125–141. doi: 10.2217/imt-2020-0256
- Austin RJ, Lemon BD, Aaron WH, et al. TriTACs, a novel class of T-cell–engaging protein constructs designed for the treatment of solid tumors. Mol Cancer Ther. 2021;20(1):109–120. doi: 10.1158/1535-7163.MCT-20-0061
- Vaishampayan UN, Thakur A, Chen W, et al. Phase II trial of pembrolizumab and anti-CD3 x anti-HER2 bispecific antibody-armed activated T cells in metastatic castration-resistant prostate cancer. Clin Cancer Res. 2023;29(1):122–133. doi: 10.1158/1078-0432.CCR-22-1601
- Archer S, Brailey PM, Song M, et al. CB307: A dual targeting costimulatory humabody VH therapeutic for treating PSMA-positive tumors. Clin Cancer Res. 2024;30(8):1595–1606. doi: 10.1158/1078-0432.CCR-23-3052
- Wang B, Hu S, Teng Y, et al. Current advance of nanotechnology in diagnosis and treatment for malignant tumors. Sig Transduct Target Ther. 2024;9(1):200. doi: 10.1038/s41392-024-01889-y
- Jiang Y, Wang C, Zu C, et al. Synergistic potential of nanomedicine in prostate cancer immunotherapy: Breakthroughs and prospects. IJN. 2024;19:9459–9486. doi: 10.2147/IJN.S466396
- Fan D, Cao Y, Cao M, et al. Nanomedicine in cancer therapy. Sig Transduct Target Ther. 2023;8(1):293. doi: 10.1038/s41392-023-01536-y
- Hassani M, Taheri FH, Sharifzadeh Z, et al. Engineered jurkat cells for targeting prostate-specific membrane antigen on prostate cancer cells by nanobody-based chimeric antigen receptor. Iran Biomed J. 2020;24(2):81–88. doi: 10.29252/ibj.24.2.81
- Khoobchandani M, Khan A, Katti KK, et al. Green nanotechnology of MGF-AuNPs for immunomodulatory intervention in prostate cancer therapy. Sci Rep. 2021;11(1):16797. doi: 10.1038/s41598-021-96224-8
- Cole G, Ali AA, McErlean E, et al. DNA vaccination via RALA nanoparticles in a microneedle delivery system induces a potent immune response against the endogenous prostate cancer stem cell antigen. Acta Biomaterialia. 2019;96:480–490. doi: 10.1016/j.actbio.2019.07.003
Supplementary files
