Reprogramming the immune response in prostate cancer treatment

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Prostate cancer is the most common malignant disease among men, accounting for approximately 29% of all cancer cases in males. Recent research in the prostate cancer treatment has shown that immunotherapy can significantly improve the quality of treatment, extend remission, and enhance patient survival. However, the tumor microenvironment can negatively affect the efficacy of immunotherapy. Insufficient T-cell infiltration, immunosuppressive microenvironment, tumor-associated T and B lymphocytes, macrophages, and myeloid-derived suppressor cells substantially reduce the efficacy of immunotherapy. Current immunotherapy strategies include vaccine-based approaches, immune checkpoint inhibitors, CAR T-cell therapy, T-cell activators, etc. This review highlights the key therapeutic approaches aimed at reprogramming the immune response in prostate cancer, including nucleic acid-based vaccines, peptide-based vaccines, viral vector-based vaccines, immune cell-based vaccines, checkpoint inhibitors, CAR T-cell therapy, and bispecific antibodies. It also presents clinical and preclinical data on these therapies. Current immunotherapy approaches demonstrate significant potential in activating and directing the immune response against tumor cells. However, further research is required to better understand the underlying mechanisms and to develop new therapeutic strategies.

Full Text

Restricted Access

About the authors

Kadriia I. Enikeeva

Bashkir State Medical University

Author for correspondence.
Email: kienikeeva@bashgmu.ru
ORCID iD: 0000-0002-5995-2124
SPIN-code: 8166-7147

Cand. Sci. (Pharmacy)

Russian Federation, Ufa

Diana Kh. Gainullina

Bashkir State Medical University

Email: gaynullina_d@inbox.ru
ORCID iD: 0009-0002-9174-4824
SPIN-code: 5116-7785
Russian Federation, Ufa

Polina N. Shmelkova

Bashkir State Medical University

Email: shmelkova_polina@mail.ru
ORCID iD: 0009-0001-3298-3895
SPIN-code: 5303-0020
Russian Federation, Ufa

Yuliya V. Sharifyanova

Bashkir State Medical University

Email: yuvsharifyanova@bashgmu.ru
ORCID iD: 0009-0000-8184-6072
SPIN-code: 2759-2939
Russian Federation, Ufa

Elina R. Akramova

Bashkir State Medical University

Email: elinaletters@gmail.com
ORCID iD: 0009-0000-1289-9365
SPIN-code: 3326-8909
Russian Federation, Ufa

Ildar R. Kabirov

Bashkir State Medical University

Email: ildarkabirov@gmail.com
ORCID iD: 0000-0002-9581-8918
SPIN-code: 6542-9231

MD, Cand. Sci. (Medicine)

Russian Federation, Ufa

Valentin N. Pavlov

Bashkir State Medical University

Email: pavlov@bashgmu.ru
ORCID iD: 0000-0003-2125-4897
SPIN-code: 2799-6268

MD, Dr. Sci. (Medicine), Professor, Academician of the Russian Academy of Sciences

Russian Federation, Ufa

References

  1. Erratum to “Cancer statistics, 2024.” CA A Cancer J Clinicians. 2024;74(2):203–203. doi: 10.3322/caac.21830
  2. Devasia TP, Mariotto AB, Nyame YA, Etzioni R. Estimating the number of men living with metastatic prostate cancer in the united states. Cancer Epidemiol Biomarkers Prev. 2023;32(5):659–665. doi: 10.1158/1055-9965.EPI-22-1038
  3. Zhang Z, Tian A, Che J, et al. Application and optimization of prostate-specific antigen screening strategy in the diagnosis of prostate cancer: a systematic review. Front Oncol. 2024;13:1320681. doi: 10.3389/fonc.2023.1320681
  4. Chen Z, Hu T, Zhou J, et al. Overview of tumor immunotherapy based on approved drugs. Life Sci. 2024;340:122419. doi: 10.1016/j.lfs.2024.122419
  5. Chen L, Xu Y-X, Wang Y-S, et al. Prostate cancer microenvironment: multidimensional regulation of immune cells, vascular system, stromal cells, and microbiota. Mol Cancer. 2024;23(1):229. doi: 10.1186/s12943-024-02137-1
  6. King A. Could immunotherapy finally break through in prostate cancer? Nature. 2022;609(7927):S42–S44. doi: 10.1038/d41586-022-02861-y
  7. De Velasco MA, Kura Y, Fujita K, Uemura H. Moving toward improved immune checkpoint immunotherapy for advanced prostate cancer. Int J Urol. 2024;31(4):307–324. doi: 10.1111/iju.15378
  8. Graff JN, Hoimes CJ, Gerritsen WR, et al. Pembrolizumab plus enzalutamide for metastatic castration-resistant prostate cancer progressing on enzalutamide: cohorts 4 and 5 of the phase 2 KEYNOTE-199 study. Prostate Cancer Prostatic Dis. 2024. doi: 10.1038/s41391-024-00865-5
  9. He J, Wu J, Li Z, et al. Immunotherapy vaccines for prostate cancer treatment. Cancer Med. 2024;13(20):e70294. doi: 10.1002/cam4.70294
  10. Madan RA, Antonarakis ES, Drake CG, et al. Putting the pieces together: completing the mechanism of action jigsaw for sipuleucel-T. J Natl Cancer Inst. 2020;112(6):562–573. doi: 10.1093/jnci/djaa021
  11. Wolf P, Alzubi J, Gratzke C, Cathomen T. The potential of CAR T cell therapy for prostate cancer. Nat Rev Urol. 2021;18(9):556–571. doi: 10.1038/s41585-021-00488-8
  12. Nair SS, Weil R, Dovey Z, et al. The tumor microenvironment and immunotherapy in prostate and bladder cancer. Urol Clin N Am. 2020;47(4S):e17–e54. doi: 10.1016/j.ucl.2020.10.005
  13. Palano MT, Gallazzi M, Cucchiara M, et al. The tumor innate immune microenvironment in prostate cancer: an overview of soluble factors and cellular effectors. Explor Target Anti-tumor Ther. 2022:694–718. doi: 10.37349/etat.2022.00108
  14. Cioni B, Zwart W, Bergman AM. Androgen receptor moonlighting in the prostate cancer microenvironment. Endocr Relat Cancer. 2018;25(6):R331–R349. doi: 10.1530/ERC-18-0042
  15. Niu Y, Chang T-M, Yeh S, et al. Differential androgen receptor signals in different cells explain why androgen-deprivation therapy of prostate cancer fails Oncogene. 2010;29(25):3593–3604. doi: 10.1038/onc.2010.121
  16. Tang Q, Cheng B, Dai R, Wang R. The role of androgen receptor in cross talk between stromal cells and prostate cancer epithelial cells. Front Cell Dev Biol. 2021;9:729498. doi: 10.3389/fcell.2021.729498
  17. ChallaSivaKanaka S, Vickman RE, Kakarla M, et al. Fibroblast heterogeneity in prostate carcinogenesis. Cancer Lett. 2022;525:76–83. doi: 10.1016/j.canlet.2021.10.028
  18. Owen JS, Clayton A, Pearson HB. Cancer-associated fibroblast heterogeneity, activation and function: implications for prostate cancer. Biomolecules. 2022;13(1):67. doi: 10.3390/biom13010067
  19. Vickman RE, Broman MM, Lanman NA, et al. Heterogeneity of human prostate carcinoma-associated fibroblasts implicates a role for subpopulations in myeloid cell recruitment. Prostate. 2020;80(2):173–185. doi: 10.1002/pros.23929
  20. Karpisheh V, Mousavi SM, Naghavi Sheykholeslami P, et al. The role of regulatory T cells in the pathogenesis and treatment of prostate cancer. Life Sci. 2021;284:119132. doi: 10.1016/j.lfs.2021.119132
  21. Sanaei M-J, Salimzadeh L, Bagheri N. Crosstalk between myeloid-derived suppressor cells and the immune system in prostate cancer. J Leukoc Biol. 2020;107(1):43–56. doi: 10.1002/JLB.4RU0819-150RR
  22. Subudhi SK, Siddiqui BA, Aparicio AM, et al. Combined CTLA-4 and PD-L1 blockade in patients with chemotherapy-naïve metastatic castration-resistant prostate cancer is associated with increased myeloid and neutrophil immune subsets in the bone microenvironment. J Immunother Cancer. 2021;9(10):e002919. doi: 10.1136/jitc-2021-002919
  23. Stultz J, Fong L. How to turn up the heat on the cold immune microenvironment of metastatic prostate cancer. Prostate Cancer Prostatic Dis. 2021;24(3):697–717. doi: 10.1038/s41391-021-00340-5
  24. Liu Z, Lv J, Dang Q, et al. Engineering neoantigen vaccines to improve cancer personalized immunotherapy. Int J Biol Sci. 2022;18(15):5607–5623. doi: 10.7150/ijbs.76281
  25. Miao L, Zhang Y, Huang L. mRNA vaccine for cancer immunotherapy. Mol Cancer. 2021;20(1):41. doi: 10.1186/s12943-021-01335-5
  26. Hawlina S, Zorec R, Chowdhury HH. Potential of personalized dendritic cell-based immunohybridoma vaccines to treat prostate cancer. Life. 2023;13(7):1498. doi: 10.3390/life13071498
  27. Gálvez-Cancino F, López E, Menares E, et al. Vaccination-induced skin-resident memory CD8+ T cells mediate strong protection against cutaneous melanoma. OncoImmunology. 2018;7(7):e1442163. doi: 10.1080/2162402X.2018.1442163
  28. Suschak JJ, Williams JA, Schmaljohn CS. Advancements in DNA vaccine vectors, non-mechanical delivery methods, and molecular adjuvants to increase immunogenicity. Hum Vacc Immunother. 2017;13(12):2837–2848. doi: 10.1080/21645515.2017.1330236
  29. Bafaloukos D, Gazouli I, Koutserimpas C, Samonis G. Evolution and progress of mRNA vaccines in the treatment of melanoma: Future prospects. Vaccines. 2023;11(3):636. doi: 10.3390/vaccines11030636
  30. Rausch S, Schwentner C, Stenzl A, Bedke J. mRNA vaccine CV9103 and CV9104 for the treatment of prostate cancer. Hum Vacc Immunother. 2014;10(11):3146–3152. doi: 10.4161/hv.29553
  31. Zanetti M. A second chance for telomerase reverse transcriptase in anticancer immunotherapy. Nat Rev Clin Oncol. 2017;14(2):115–128. doi: 10.1038/nrclinonc.2016.67
  32. Lilleby W, Gaudernack G, Brunsvig PF, et al. Phase I/IIa clinical trial of a novel hTERT peptide vaccine in men with metastatic hormone-naive prostate cancer. Cancer Immunol Immunother. 2017;66(7):891–901. doi: 10.1007/s00262-017-1994-y
  33. Bouard D, Alazard-Dany N, Cosset F. Viral vectors: from virology to transgene expression. Br J Pharmacol. 2009;157(2):153–165. doi: 10.1038/bjp.2008.349
  34. Lin MJ, Svensson-Arvelund J, Lubitz GS, et al. Cancer vaccines: the next immunotherapy frontier. Nat Cancer. 2022;3(8):911–926. doi: 10.1038/s43018-022-00418-6
  35. Higano CS, Schellhammer PF, Small EJ, et al. Integrated data from 2 randomized, double-blind, placebo-controlled, phase 3 trials of active cellular immunotherapy with sipuleucel-T in advanced prostate cancer. Cancer. 2009;115(16):3670–3679. doi: 10.1002/cncr.24429
  36. Vogelzang NJ, Beer TM, Gerritsen W, et al. Efficacy and safety of autologous dendritic cell–based immunotherapy, docetaxel, and prednisone vs placebo in patients with metastatic castration-resistant prostate cancer: The VIABLE phase 3 randomized clinical trial. JAMA Oncol. 2022;8(4):546–542. doi: 10.1001/jamaoncol.2021.7298
  37. Haque Chowdhury H, Hawlina S, Gabrijel M, et al. Survival of castration-resistant prostate cancer patients treated with dendritic-tumor cell hybridomas is negatively correlated with changes in peripheral blood CD56bright CD16– natural killer cells. Clin Transl Med. 2021;11(8):e505. doi: 10.1002/ctm2.505
  38. Cheever MA, Higano CS. PROVENGE (sipuleucel-T) in prostate cancer: The first FDA-approved therapeutic cancer vaccine. Clin Cancer Res. 2011;17(11):3520–3526. doi: 10.1158/1078-0432.CCR-10-3126
  39. Meng L, Yang Y, Mortazavi A, Zhang J. Emerging immunotherapy approaches for treating prostate cancer. Int J Mol Sci. 2023;24(18):14347. doi: 10.3390/ijms241814347
  40. Mustafina DA, Bagautdinova AN, Zinatullina MM, et al. The role of immune checkpoint inhibitors in the development and treatment of infectious processes. Journal of Clinical Practice. 2024;15(1):91–106. doi: 10.17816/clinpract627504 EDN: TYGZSH
  41. Shubnikova EV, Bukatina TM, Velts NYu, et al. Immune response checkpoint inhibitors: new risks of a new class of antitumor agents. Safety and Risk of Pharmacotherapy. 2020;8(1):9–22. doi: 10.30895/2312-7821-2020-8-1-9-22 EDN: EEVXRX
  42. Farhangnia P, Ghomi SM, Akbarpour M, Delbandi AA. Bispecific antibodies targeting CTLA-4: game-changer troopers in cancer immunotherapy. Front Immunol. 2023;14:1155778. doi: 10.3389/fimmu.2023.1155778
  43. Hossen MM, Ma Y, Yin Z, et al. Current understanding of CTLA-4: from mechanism to autoimmune diseases. Front Immunol. 2023;14:1198365. doi: 10.3389/fimmu.2023.1198365
  44. Salmaninejad A, Valilou SF, Shabgah AG, et al. PD-1/PD-L1 pathway: Basic biology and role in cancer immunotherapy. J Cell Physiol. 2019;234(10):16824–16837. doi: 10.1002/jcp.28358
  45. Lotfinejad P, Kazemi T, Mokhtarzadeh A, et al. PD-1/PD-L1 axis importance and tumor microenvironment immune cells. Life Sci. 2020;259:118297. doi: 10.1016/j.lfs.2020.118297
  46. Alaia C, Boccellino M, Zappavigna S, et al. Ipilimumab for the treatment of metastatic prostate cancer. Expert Opin Biol Ther. 2018;18(2):205–213. doi: 10.1080/14712598.2018.1420777
  47. Pavlov AYu, Dzidzaria AG, Gafanov RA, et al. Metastatic castration-resistant prostate cancer and immune checkpoint inhibitors. Cancer Urology. 2024;20(1):153–163. doi: 10.17650/1726-9776-2024-20-1-153-163 EDN: IUQTVF
  48. Wee CE, Costello BA, Orme JJ, et al. Chemotherapy with atezolizumab for small cell or neuroendocrine carcinoma of the prostate: A single institution experience. Prostate. 2021;81(13):938–943. doi: 10.1002/pros.24189
  49. Rodriguez-Vida A, Maroto P, Font A, et al. Safety and efficacy of avelumab plus carboplatin in patients with metastatic castration-resistant prostate cancer in an open-label Phase Ib study. Br J Cancer. 2023;128(1):21–29. doi: 10.1038/s41416-022-01991-4
  50. Karzai F, VanderWeele D, Madan RA, et al. Activity of durvalumab plus olaparib in metastatic castration-resistant prostate cancer in men with and without DNA damage repair mutations. J Immunother Cancer. 2018;6(1):141. doi: 10.1186/s40425-018-0463-2
  51. Knochelmann HM, Smith AS, Dwyer CJ, et al. CAR T Cells in solid tumors: Blueprints for building effective therapies. Front Immunol. 2018;9:1740. doi: 10.3389/fimmu.2018.01740
  52. Sterner RC, Sterner RM. CAR-T cell therapy: current limitations and potential strategies. Blood Cancer J. 2021;11(4):69. doi: 10.1038/s41408-021-00459-7
  53. Fischer JW, Bhattarai N. CAR-T cell therapy: Mechanism, management, and mitigation of inflammatory toxicities. Front Immunol. 2021;12:693016. doi: 10.3389/fimmu.2021.693016
  54. Deng Q, Han G, Puebla-Osorio N, et al. Characteristics of anti-CD19 CAR T cell infusion products associated with efficacy and toxicity in patients with large B cell lymphomas. Nat Med. 2020;26(12): 1878–1887. doi: 10.1038/s41591-020-1061-7
  55. Haslauer T, Greil R, Zaborsky N, Geisberger R. CAR T-cell therapy in hematological malignancies. Int J Mol Sci. 2021;22(16):8996. doi: 10.3390/ijms22168996
  56. Chohan KL, Siegler EL, Kenderian SS. CAR-T cell therapy: the efficacy and toxicity balance. Curr Hematol Malig Rep. 2023;18(2):9–18. doi: 10.1007/s11899-023-00687-7
  57. Zhang G, Wang Y, Lu S, et al. Molecular understanding and clinical outcomes of CAR T cell therapy in the treatment of urological tumors. Cell Death Dis. 2024;15(5):359. doi: 10.1038/s41419-024-06734-2
  58. Schepisi G, Cursano MC, Casadei C, et al. CAR-T cell therapy: a potential new strategy against prostate cancer. J Immunother Cancer. 2019;7(1):258. doi: 10.1186/s40425-019-0741-7
  59. Dorff TB, Blanchard MS, Adkins LN, et al. PSCA-CAR T cell therapy in metastatic castration-resistant prostate cancer: a phase 1 trial. Nat Med. 2024;30(6):1636–1644. doi: 10.1038/s41591-024-02979-8
  60. Santourlidis S, Araúzo-Bravo MJ, Erichsen L, Bendhack ML. Epigenetics meets CAR-T-cell therapy to fight cancer. Cancers. 2024;16(10):1941. doi: 10.3390/cancers16101941
  61. Hubert RS, Vivanco I, Chen E, et al. STEAP: A prostate-specific cell-surface antigen highly expressed in human prostate tumors. PNAS USA. 1999;96(25):14523–14528. doi: 10.1073/pnas.96.25.14523
  62. Bhatia V, Kamat NV, Pariva TE, et al. Targeting advanced prostate cancer with STEAP1 chimeric antigen receptor T cell and tumor-localized IL-12 immunotherapy. Nat Commun. 2023;14(1):2041. doi: 10.1038/s41467-023-37874-2
  63. Zanvit P, Van Dyk D, Fazenbaker C, et al. Antitumor activity of AZD0754, a dnTGFβRII-armored, STEAP2-targeted CAR-T cell therapy, in prostate cancer. J Clin Investig. 2023;133(22):e169655. doi: 10.1172/JCI169655
  64. Kloss CC, Condomines M, Cartellieri M, et al. Combinatorial antigen recognition with balanced signaling promotes selective tumor eradication by engineered T cells. Nat Biotechnol. 2013;31(1):71–75. doi: 10.1038/nbt.2459
  65. Lindo L, Wilkinson LH, Hay KA. Befriending the hostile tumor microenvironment in CAR T-cell therapy. Front Immunol. 2021;11:618387. doi: 10.3389/fimmu.2020.618387
  66. Saleh OM, Albakri KA, Alabdallat YJ, et al. The safety and efficacy of CAR-T cells in the treatment of prostate cancer: review. Biomarkers. 2022;27(1):22–34. doi: 10.1080/1354750X.2021.2016973
  67. Palecki J, Bhasin A, Bernstein A, et al. T-Cell redirecting bispecific antibodies: a review of a novel class of immuno-oncology for advanced prostate cancer. Cancer Biol Ther. 2024;25(1):2356820. doi: 10.1080/15384047.2024.2356820
  68. Simão DC, Zarrabi KK, Mendes JL, et al. Bispecific T-cell engagers therapies in solid tumors: Focusing on prostate cancer. Cancers. 2023;15(5):1412. doi: 10.3390/cancers15051412
  69. Hummel H-D, Kufer P, Grüllich C, et al. Pasotuxizumab, a Bite® immune therapy for castration-resistant prostate cancer: Phase I, dose-escalation study findings. Immunotherapy. 2021;13(2):125–141. doi: 10.2217/imt-2020-0256
  70. Austin RJ, Lemon BD, Aaron WH, et al. TriTACs, a novel class of T-cell–engaging protein constructs designed for the treatment of solid tumors. Mol Cancer Ther. 2021;20(1):109–120. doi: 10.1158/1535-7163.MCT-20-0061
  71. Vaishampayan UN, Thakur A, Chen W, et al. Phase II trial of pembrolizumab and anti-CD3 x anti-HER2 bispecific antibody-armed activated T cells in metastatic castration-resistant prostate cancer. Clin Cancer Res. 2023;29(1):122–133. doi: 10.1158/1078-0432.CCR-22-1601
  72. Archer S, Brailey PM, Song M, et al. CB307: A dual targeting costimulatory humabody VH therapeutic for treating PSMA-positive tumors. Clin Cancer Res. 2024;30(8):1595–1606. doi: 10.1158/1078-0432.CCR-23-3052
  73. Wang B, Hu S, Teng Y, et al. Current advance of nanotechnology in diagnosis and treatment for malignant tumors. Sig Transduct Target Ther. 2024;9(1):200. doi: 10.1038/s41392-024-01889-y
  74. Jiang Y, Wang C, Zu C, et al. Synergistic potential of nanomedicine in prostate cancer immunotherapy: Breakthroughs and prospects. IJN. 2024;19:9459–9486. doi: 10.2147/IJN.S466396
  75. Fan D, Cao Y, Cao M, et al. Nanomedicine in cancer therapy. Sig Transduct Target Ther. 2023;8(1):293. doi: 10.1038/s41392-023-01536-y
  76. Hassani M, Taheri FH, Sharifzadeh Z, et al. Engineered jurkat cells for targeting prostate-specific membrane antigen on prostate cancer cells by nanobody-based chimeric antigen receptor. Iran Biomed J. 2020;24(2):81–88. doi: 10.29252/ibj.24.2.81
  77. Khoobchandani M, Khan A, Katti KK, et al. Green nanotechnology of MGF-AuNPs for immunomodulatory intervention in prostate cancer therapy. Sci Rep. 2021;11(1):16797. doi: 10.1038/s41598-021-96224-8
  78. Cole G, Ali AA, McErlean E, et al. DNA vaccination via RALA nanoparticles in a microneedle delivery system induces a potent immune response against the endogenous prostate cancer stem cell antigen. Acta Biomaterialia. 2019;96:480–490. doi: 10.1016/j.actbio.2019.07.003

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Microenvironment of prostate cancer (fragment). Cancer-associated fibroblasts are present in the tumor microenvironment. These cells produce extracellular matrix components such as collagen, hyaluronan, and fibronectin, which disrupt the normal architecture of tissues and promotes oncogenesis. At a higher magnification, there are also myeloid-derived suppressor cells (MDSCs), which inhibit the activity of T cells and NK cells and promote the formation of regulatory T cells by secreting cytokines such as IL-10 and TGF-β. The image was created using the online tool bioRender (https://biorender.com/).

Download (282KB)
3. Рис. 2. Механизм иммунотерапии рака предстательной железы с использованием ингибиторов иммунных контрольных точек (иИКТ). Механизм действия на примере пути PD-L1, где Anti PD-L1 — препараты иИКТ, действующие на данный путь, — атезолизумаб, авелумаб, дурвалумаб и т. д. Блокируя путь PD-L1, иИКТ предотвращают связь путей PD-1 с PD-L1, что предотвращает инициацию ингибирующих сигналов, которые снижают выработку цитокинов, пролиферацию клеток, выживание и цитотоксическую активность PD-1+ Т-клеток в микроокружении опухоли. Рисунок создан с помощью онлайн-инструмента bioRender (https://biorender.com/). Fig. 2. Mechanism of prostate cancer immunotherapy using immune checkpoint inhibitors (ICIs). Mechanism of action using the example of the PD-L1 pathway, where anti-PD-L1 agents are ICIs that target this pathway (atezolizumab, avelumab, durvalumab, etc.). By blocking the PD-L1 pathway, ICIs prevent the interaction between PD-1 and PD-L1, thereby inhibiting the initiation of suppressive signals that reduce cytokine production, cell proliferation, survival, and cytotoxic activity of PD-1+ T cells in the tumor microenvironment. The image was created using the online tool bioRender (https://biorender.com/).

Download (109KB)
4. Fig. 3. CAR-T-cell therapy for prostate cancer. Technology for obtaining CAR-T-cells and the mechanism of antitumor action. T-lymphocytes are extracted from the patient’s blood and genetically modified. They are introduced with a gene encoding a chimeric antigen receptor (CAR), which allows the cells to recognize and attack cancer cells. The modified T-cells are cultured in the laboratory, where they multiply and become activated. Once the required number of CAR-T-cells has been reached, they are reintroduced into the patient’s body, where they begin to recognize and destroy cancer cells. The drawing was created using the online tool bioRender (https://biorender.com/).

Download (229KB)

Copyright (c) 2025 Eco-Vector

License URL: https://eco-vector.com/for_authors.php#07

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 89281 от 21.04.2025.