Программирование иммунитета в лечении рака предстательной железы
- Авторы: Еникеева К.И.1, Гайнуллина Д.Х.1, Шмелькова П.Н.1, Шарифьянова Ю.В.1, Акрамова Э.Р.1, Кабиров И.Р.1, Павлов В.Н.1
-
Учреждения:
- Башкирский государственный медицинский университет
- Выпуск: Том 15, № 1 (2025)
- Страницы: 75-88
- Раздел: Научные обзоры
- Статья получена: 17.01.2025
- Статья одобрена: 06.03.2025
- Статья опубликована: 07.05.2025
- URL: https://journals.eco-vector.com/uroved/article/view/646326
- DOI: https://doi.org/10.17816/uroved646326
- ID: 646326
Цитировать
Полный текст



Аннотация
Рак предстательной железы — наиболее часто встречающееся злокачественное заболевание среди мужчин. Данный вид рака составляет около 29% всех онкологических диагнозов у лиц мужского пола. Современные исследования в лечении рака простаты показывают, что иммунотерапия может значительно улучшить качество лечения, продлить ремиссию и улучшить выживаемость пациентов, при этом стоит отметить негативное влияние опухолевого микроокружения на эффективность терапии. Недостаточная инфильтрации Т-клетками, иммуносупрессивная микросреда, Т- и В-лимфоциты, макрофаги, ассоциированные с опухолью, миелоидные супрессорные клетки существенно снижают эффективность иммунотерапии. Современные стратегии иммунотерапии включают вакцинотерапию, ингибиторы контрольных точек, CAR-Т-клеточную терапию, активаторы Т-клеток и др. В данном обзоре освещены основные терапевтические подходы к репрограммированию иммунитета при раке простаты, включающие вакцины на основе нуклеиновых кислот, пептидов, вирусных векторов, вакцины на основе иммунных клеток, ингибиторы контрольных точек, CAR-Т-клеточную терапию, биспецифические антитела, а также клинические и доклинические исследования препаратов этих групп. Современные подходы в иммунотерапии демонстрируют значительный потенциал в активации и направлении иммунного ответа на опухолевые клетки, но требуют дальнейших исследований для более глубокого понимания механизмов взаимодействия и в разработке новых стратегий.
Полный текст

Об авторах
Кадрия Ильдаровна Еникеева
Башкирский государственный медицинский университет
Автор, ответственный за переписку.
Email: kienikeeva@bashgmu.ru
ORCID iD: 0000-0002-5995-2124
SPIN-код: 8166-7147
канд. фарм. наук
Россия, УфаДиана Халиловна Гайнуллина
Башкирский государственный медицинский университет
Email: gaynullina_d@inbox.ru
ORCID iD: 0009-0002-9174-4824
SPIN-код: 5116-7785
Россия, Уфа
Полина Николаевна Шмелькова
Башкирский государственный медицинский университет
Email: shmelkova_polina@mail.ru
ORCID iD: 0009-0001-3298-3895
SPIN-код: 5303-0020
Россия, Уфа
Юлия Вакилевна Шарифьянова
Башкирский государственный медицинский университет
Email: yuvsharifyanova@bashgmu.ru
ORCID iD: 0009-0000-8184-6072
SPIN-код: 2759-2939
Россия, Уфа
Элина Ринатовна Акрамова
Башкирский государственный медицинский университет
Email: elinaletters@gmail.com
ORCID iD: 0009-0000-1289-9365
SPIN-код: 3326-8909
Россия, Уфа
Ильдар Раифович Кабиров
Башкирский государственный медицинский университет
Email: ildarkabirov@gmail.com
ORCID iD: 0000-0002-9581-8918
SPIN-код: 6542-9231
канд. мед. наук
Россия, УфаВалентин Николаевич Павлов
Башкирский государственный медицинский университет
Email: pavlov@bashgmu.ru
ORCID iD: 0000-0003-2125-4897
SPIN-код: 2799-6268
д-р мед. наук, профессор, академик РАН
Россия, УфаСписок литературы
- Erratum to “Cancer statistics, 2024.” CA A Cancer J Clinicians. 2024;74(2):203–203. doi: 10.3322/caac.21830
- Devasia TP, Mariotto AB, Nyame YA, Etzioni R. Estimating the number of men living with metastatic prostate cancer in the united states. Cancer Epidemiol Biomarkers Prev. 2023;32(5):659–665. doi: 10.1158/1055-9965.EPI-22-1038
- Zhang Z, Tian A, Che J, et al. Application and optimization of prostate-specific antigen screening strategy in the diagnosis of prostate cancer: a systematic review. Front Oncol. 2024;13:1320681. doi: 10.3389/fonc.2023.1320681
- Chen Z, Hu T, Zhou J, et al. Overview of tumor immunotherapy based on approved drugs. Life Sci. 2024;340:122419. doi: 10.1016/j.lfs.2024.122419
- Chen L, Xu Y-X, Wang Y-S, et al. Prostate cancer microenvironment: multidimensional regulation of immune cells, vascular system, stromal cells, and microbiota. Mol Cancer. 2024;23(1):229. doi: 10.1186/s12943-024-02137-1
- King A. Could immunotherapy finally break through in prostate cancer? Nature. 2022;609(7927):S42–S44. doi: 10.1038/d41586-022-02861-y
- De Velasco MA, Kura Y, Fujita K, Uemura H. Moving toward improved immune checkpoint immunotherapy for advanced prostate cancer. Int J Urol. 2024;31(4):307–324. doi: 10.1111/iju.15378
- Graff JN, Hoimes CJ, Gerritsen WR, et al. Pembrolizumab plus enzalutamide for metastatic castration-resistant prostate cancer progressing on enzalutamide: cohorts 4 and 5 of the phase 2 KEYNOTE-199 study. Prostate Cancer Prostatic Dis. 2024. doi: 10.1038/s41391-024-00865-5
- He J, Wu J, Li Z, et al. Immunotherapy vaccines for prostate cancer treatment. Cancer Med. 2024;13(20):e70294. doi: 10.1002/cam4.70294
- Madan RA, Antonarakis ES, Drake CG, et al. Putting the pieces together: completing the mechanism of action jigsaw for sipuleucel-T. J Natl Cancer Inst. 2020;112(6):562–573. doi: 10.1093/jnci/djaa021
- Wolf P, Alzubi J, Gratzke C, Cathomen T. The potential of CAR T cell therapy for prostate cancer. Nat Rev Urol. 2021;18(9):556–571. doi: 10.1038/s41585-021-00488-8
- Nair SS, Weil R, Dovey Z, et al. The tumor microenvironment and immunotherapy in prostate and bladder cancer. Urol Clin N Am. 2020;47(4S):e17–e54. doi: 10.1016/j.ucl.2020.10.005
- Palano MT, Gallazzi M, Cucchiara M, et al. The tumor innate immune microenvironment in prostate cancer: an overview of soluble factors and cellular effectors. Explor Target Anti-tumor Ther. 2022:694–718. doi: 10.37349/etat.2022.00108
- Cioni B, Zwart W, Bergman AM. Androgen receptor moonlighting in the prostate cancer microenvironment. Endocr Relat Cancer. 2018;25(6):R331–R349. doi: 10.1530/ERC-18-0042
- Niu Y, Chang T-M, Yeh S, et al. Differential androgen receptor signals in different cells explain why androgen-deprivation therapy of prostate cancer fails Oncogene. 2010;29(25):3593–3604. doi: 10.1038/onc.2010.121
- Tang Q, Cheng B, Dai R, Wang R. The role of androgen receptor in cross talk between stromal cells and prostate cancer epithelial cells. Front Cell Dev Biol. 2021;9:729498. doi: 10.3389/fcell.2021.729498
- ChallaSivaKanaka S, Vickman RE, Kakarla M, et al. Fibroblast heterogeneity in prostate carcinogenesis. Cancer Lett. 2022;525:76–83. doi: 10.1016/j.canlet.2021.10.028
- Owen JS, Clayton A, Pearson HB. Cancer-associated fibroblast heterogeneity, activation and function: implications for prostate cancer. Biomolecules. 2022;13(1):67. doi: 10.3390/biom13010067
- Vickman RE, Broman MM, Lanman NA, et al. Heterogeneity of human prostate carcinoma-associated fibroblasts implicates a role for subpopulations in myeloid cell recruitment. Prostate. 2020;80(2):173–185. doi: 10.1002/pros.23929
- Karpisheh V, Mousavi SM, Naghavi Sheykholeslami P, et al. The role of regulatory T cells in the pathogenesis and treatment of prostate cancer. Life Sci. 2021;284:119132. doi: 10.1016/j.lfs.2021.119132
- Sanaei M-J, Salimzadeh L, Bagheri N. Crosstalk between myeloid-derived suppressor cells and the immune system in prostate cancer. J Leukoc Biol. 2020;107(1):43–56. doi: 10.1002/JLB.4RU0819-150RR
- Subudhi SK, Siddiqui BA, Aparicio AM, et al. Combined CTLA-4 and PD-L1 blockade in patients with chemotherapy-naïve metastatic castration-resistant prostate cancer is associated with increased myeloid and neutrophil immune subsets in the bone microenvironment. J Immunother Cancer. 2021;9(10):e002919. doi: 10.1136/jitc-2021-002919
- Stultz J, Fong L. How to turn up the heat on the cold immune microenvironment of metastatic prostate cancer. Prostate Cancer Prostatic Dis. 2021;24(3):697–717. doi: 10.1038/s41391-021-00340-5
- Liu Z, Lv J, Dang Q, et al. Engineering neoantigen vaccines to improve cancer personalized immunotherapy. Int J Biol Sci. 2022;18(15):5607–5623. doi: 10.7150/ijbs.76281
- Miao L, Zhang Y, Huang L. mRNA vaccine for cancer immunotherapy. Mol Cancer. 2021;20(1):41. doi: 10.1186/s12943-021-01335-5
- Hawlina S, Zorec R, Chowdhury HH. Potential of personalized dendritic cell-based immunohybridoma vaccines to treat prostate cancer. Life. 2023;13(7):1498. doi: 10.3390/life13071498
- Gálvez-Cancino F, López E, Menares E, et al. Vaccination-induced skin-resident memory CD8+ T cells mediate strong protection against cutaneous melanoma. OncoImmunology. 2018;7(7):e1442163. doi: 10.1080/2162402X.2018.1442163
- Suschak JJ, Williams JA, Schmaljohn CS. Advancements in DNA vaccine vectors, non-mechanical delivery methods, and molecular adjuvants to increase immunogenicity. Hum Vacc Immunother. 2017;13(12):2837–2848. doi: 10.1080/21645515.2017.1330236
- Bafaloukos D, Gazouli I, Koutserimpas C, Samonis G. Evolution and progress of mRNA vaccines in the treatment of melanoma: Future prospects. Vaccines. 2023;11(3):636. doi: 10.3390/vaccines11030636
- Rausch S, Schwentner C, Stenzl A, Bedke J. mRNA vaccine CV9103 and CV9104 for the treatment of prostate cancer. Hum Vacc Immunother. 2014;10(11):3146–3152. doi: 10.4161/hv.29553
- Zanetti M. A second chance for telomerase reverse transcriptase in anticancer immunotherapy. Nat Rev Clin Oncol. 2017;14(2):115–128. doi: 10.1038/nrclinonc.2016.67
- Lilleby W, Gaudernack G, Brunsvig PF, et al. Phase I/IIa clinical trial of a novel hTERT peptide vaccine in men with metastatic hormone-naive prostate cancer. Cancer Immunol Immunother. 2017;66(7):891–901. doi: 10.1007/s00262-017-1994-y
- Bouard D, Alazard-Dany N, Cosset F. Viral vectors: from virology to transgene expression. Br J Pharmacol. 2009;157(2):153–165. doi: 10.1038/bjp.2008.349
- Lin MJ, Svensson-Arvelund J, Lubitz GS, et al. Cancer vaccines: the next immunotherapy frontier. Nat Cancer. 2022;3(8):911–926. doi: 10.1038/s43018-022-00418-6
- Higano CS, Schellhammer PF, Small EJ, et al. Integrated data from 2 randomized, double-blind, placebo-controlled, phase 3 trials of active cellular immunotherapy with sipuleucel-T in advanced prostate cancer. Cancer. 2009;115(16):3670–3679. doi: 10.1002/cncr.24429
- Vogelzang NJ, Beer TM, Gerritsen W, et al. Efficacy and safety of autologous dendritic cell–based immunotherapy, docetaxel, and prednisone vs placebo in patients with metastatic castration-resistant prostate cancer: The VIABLE phase 3 randomized clinical trial. JAMA Oncol. 2022;8(4):546–542. doi: 10.1001/jamaoncol.2021.7298
- Haque Chowdhury H, Hawlina S, Gabrijel M, et al. Survival of castration-resistant prostate cancer patients treated with dendritic-tumor cell hybridomas is negatively correlated with changes in peripheral blood CD56bright CD16– natural killer cells. Clin Transl Med. 2021;11(8):e505. doi: 10.1002/ctm2.505
- Cheever MA, Higano CS. PROVENGE (sipuleucel-T) in prostate cancer: The first FDA-approved therapeutic cancer vaccine. Clin Cancer Res. 2011;17(11):3520–3526. doi: 10.1158/1078-0432.CCR-10-3126
- Meng L, Yang Y, Mortazavi A, Zhang J. Emerging immunotherapy approaches for treating prostate cancer. Int J Mol Sci. 2023;24(18):14347. doi: 10.3390/ijms241814347
- Mustafina DA, Bagautdinova AN, Zinatullina MM, et al. The role of immune checkpoint inhibitors in the development and treatment of infectious processes. Journal of Clinical Practice. 2024;15(1):91–106. doi: 10.17816/clinpract627504 EDN: TYGZSH
- Shubnikova EV, Bukatina TM, Velts NYu, et al. Immune response checkpoint inhibitors: new risks of a new class of antitumor agents. Safety and Risk of Pharmacotherapy. 2020;8(1):9–22. doi: 10.30895/2312-7821-2020-8-1-9-22 EDN: EEVXRX
- Farhangnia P, Ghomi SM, Akbarpour M, Delbandi AA. Bispecific antibodies targeting CTLA-4: game-changer troopers in cancer immunotherapy. Front Immunol. 2023;14:1155778. doi: 10.3389/fimmu.2023.1155778
- Hossen MM, Ma Y, Yin Z, et al. Current understanding of CTLA-4: from mechanism to autoimmune diseases. Front Immunol. 2023;14:1198365. doi: 10.3389/fimmu.2023.1198365
- Salmaninejad A, Valilou SF, Shabgah AG, et al. PD-1/PD-L1 pathway: Basic biology and role in cancer immunotherapy. J Cell Physiol. 2019;234(10):16824–16837. doi: 10.1002/jcp.28358
- Lotfinejad P, Kazemi T, Mokhtarzadeh A, et al. PD-1/PD-L1 axis importance and tumor microenvironment immune cells. Life Sci. 2020;259:118297. doi: 10.1016/j.lfs.2020.118297
- Alaia C, Boccellino M, Zappavigna S, et al. Ipilimumab for the treatment of metastatic prostate cancer. Expert Opin Biol Ther. 2018;18(2):205–213. doi: 10.1080/14712598.2018.1420777
- Pavlov AYu, Dzidzaria AG, Gafanov RA, et al. Metastatic castration-resistant prostate cancer and immune checkpoint inhibitors. Cancer Urology. 2024;20(1):153–163. doi: 10.17650/1726-9776-2024-20-1-153-163 EDN: IUQTVF
- Wee CE, Costello BA, Orme JJ, et al. Chemotherapy with atezolizumab for small cell or neuroendocrine carcinoma of the prostate: A single institution experience. Prostate. 2021;81(13):938–943. doi: 10.1002/pros.24189
- Rodriguez-Vida A, Maroto P, Font A, et al. Safety and efficacy of avelumab plus carboplatin in patients with metastatic castration-resistant prostate cancer in an open-label Phase Ib study. Br J Cancer. 2023;128(1):21–29. doi: 10.1038/s41416-022-01991-4
- Karzai F, VanderWeele D, Madan RA, et al. Activity of durvalumab plus olaparib in metastatic castration-resistant prostate cancer in men with and without DNA damage repair mutations. J Immunother Cancer. 2018;6(1):141. doi: 10.1186/s40425-018-0463-2
- Knochelmann HM, Smith AS, Dwyer CJ, et al. CAR T Cells in solid tumors: Blueprints for building effective therapies. Front Immunol. 2018;9:1740. doi: 10.3389/fimmu.2018.01740
- Sterner RC, Sterner RM. CAR-T cell therapy: current limitations and potential strategies. Blood Cancer J. 2021;11(4):69. doi: 10.1038/s41408-021-00459-7
- Fischer JW, Bhattarai N. CAR-T cell therapy: Mechanism, management, and mitigation of inflammatory toxicities. Front Immunol. 2021;12:693016. doi: 10.3389/fimmu.2021.693016
- Deng Q, Han G, Puebla-Osorio N, et al. Characteristics of anti-CD19 CAR T cell infusion products associated with efficacy and toxicity in patients with large B cell lymphomas. Nat Med. 2020;26(12): 1878–1887. doi: 10.1038/s41591-020-1061-7
- Haslauer T, Greil R, Zaborsky N, Geisberger R. CAR T-cell therapy in hematological malignancies. Int J Mol Sci. 2021;22(16):8996. doi: 10.3390/ijms22168996
- Chohan KL, Siegler EL, Kenderian SS. CAR-T cell therapy: the efficacy and toxicity balance. Curr Hematol Malig Rep. 2023;18(2):9–18. doi: 10.1007/s11899-023-00687-7
- Zhang G, Wang Y, Lu S, et al. Molecular understanding and clinical outcomes of CAR T cell therapy in the treatment of urological tumors. Cell Death Dis. 2024;15(5):359. doi: 10.1038/s41419-024-06734-2
- Schepisi G, Cursano MC, Casadei C, et al. CAR-T cell therapy: a potential new strategy against prostate cancer. J Immunother Cancer. 2019;7(1):258. doi: 10.1186/s40425-019-0741-7
- Dorff TB, Blanchard MS, Adkins LN, et al. PSCA-CAR T cell therapy in metastatic castration-resistant prostate cancer: a phase 1 trial. Nat Med. 2024;30(6):1636–1644. doi: 10.1038/s41591-024-02979-8
- Santourlidis S, Araúzo-Bravo MJ, Erichsen L, Bendhack ML. Epigenetics meets CAR-T-cell therapy to fight cancer. Cancers. 2024;16(10):1941. doi: 10.3390/cancers16101941
- Hubert RS, Vivanco I, Chen E, et al. STEAP: A prostate-specific cell-surface antigen highly expressed in human prostate tumors. PNAS USA. 1999;96(25):14523–14528. doi: 10.1073/pnas.96.25.14523
- Bhatia V, Kamat NV, Pariva TE, et al. Targeting advanced prostate cancer with STEAP1 chimeric antigen receptor T cell and tumor-localized IL-12 immunotherapy. Nat Commun. 2023;14(1):2041. doi: 10.1038/s41467-023-37874-2
- Zanvit P, Van Dyk D, Fazenbaker C, et al. Antitumor activity of AZD0754, a dnTGFβRII-armored, STEAP2-targeted CAR-T cell therapy, in prostate cancer. J Clin Investig. 2023;133(22):e169655. doi: 10.1172/JCI169655
- Kloss CC, Condomines M, Cartellieri M, et al. Combinatorial antigen recognition with balanced signaling promotes selective tumor eradication by engineered T cells. Nat Biotechnol. 2013;31(1):71–75. doi: 10.1038/nbt.2459
- Lindo L, Wilkinson LH, Hay KA. Befriending the hostile tumor microenvironment in CAR T-cell therapy. Front Immunol. 2021;11:618387. doi: 10.3389/fimmu.2020.618387
- Saleh OM, Albakri KA, Alabdallat YJ, et al. The safety and efficacy of CAR-T cells in the treatment of prostate cancer: review. Biomarkers. 2022;27(1):22–34. doi: 10.1080/1354750X.2021.2016973
- Palecki J, Bhasin A, Bernstein A, et al. T-Cell redirecting bispecific antibodies: a review of a novel class of immuno-oncology for advanced prostate cancer. Cancer Biol Ther. 2024;25(1):2356820. doi: 10.1080/15384047.2024.2356820
- Simão DC, Zarrabi KK, Mendes JL, et al. Bispecific T-cell engagers therapies in solid tumors: Focusing on prostate cancer. Cancers. 2023;15(5):1412. doi: 10.3390/cancers15051412
- Hummel H-D, Kufer P, Grüllich C, et al. Pasotuxizumab, a Bite® immune therapy for castration-resistant prostate cancer: Phase I, dose-escalation study findings. Immunotherapy. 2021;13(2):125–141. doi: 10.2217/imt-2020-0256
- Austin RJ, Lemon BD, Aaron WH, et al. TriTACs, a novel class of T-cell–engaging protein constructs designed for the treatment of solid tumors. Mol Cancer Ther. 2021;20(1):109–120. doi: 10.1158/1535-7163.MCT-20-0061
- Vaishampayan UN, Thakur A, Chen W, et al. Phase II trial of pembrolizumab and anti-CD3 x anti-HER2 bispecific antibody-armed activated T cells in metastatic castration-resistant prostate cancer. Clin Cancer Res. 2023;29(1):122–133. doi: 10.1158/1078-0432.CCR-22-1601
- Archer S, Brailey PM, Song M, et al. CB307: A dual targeting costimulatory humabody VH therapeutic for treating PSMA-positive tumors. Clin Cancer Res. 2024;30(8):1595–1606. doi: 10.1158/1078-0432.CCR-23-3052
- Wang B, Hu S, Teng Y, et al. Current advance of nanotechnology in diagnosis and treatment for malignant tumors. Sig Transduct Target Ther. 2024;9(1):200. doi: 10.1038/s41392-024-01889-y
- Jiang Y, Wang C, Zu C, et al. Synergistic potential of nanomedicine in prostate cancer immunotherapy: Breakthroughs and prospects. IJN. 2024;19:9459–9486. doi: 10.2147/IJN.S466396
- Fan D, Cao Y, Cao M, et al. Nanomedicine in cancer therapy. Sig Transduct Target Ther. 2023;8(1):293. doi: 10.1038/s41392-023-01536-y
- Hassani M, Taheri FH, Sharifzadeh Z, et al. Engineered jurkat cells for targeting prostate-specific membrane antigen on prostate cancer cells by nanobody-based chimeric antigen receptor. Iran Biomed J. 2020;24(2):81–88. doi: 10.29252/ibj.24.2.81
- Khoobchandani M, Khan A, Katti KK, et al. Green nanotechnology of MGF-AuNPs for immunomodulatory intervention in prostate cancer therapy. Sci Rep. 2021;11(1):16797. doi: 10.1038/s41598-021-96224-8
- Cole G, Ali AA, McErlean E, et al. DNA vaccination via RALA nanoparticles in a microneedle delivery system induces a potent immune response against the endogenous prostate cancer stem cell antigen. Acta Biomaterialia. 2019;96:480–490. doi: 10.1016/j.actbio.2019.07.003
Дополнительные файлы
