Cellular technologies in the treatment of urologic diseases

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The use of multipotent stem cells opens new possibilities in various fields of medicine, including urology. This article provides a detailed overview of experimental and clinical studies demonstrating the efficacy of multipotent stem cells in the treatment of urologic diseases. Multipotent stem cells have been shown to reduce the severity of renal failure, improve urinary incontinence, and alleviate both organic and functional bladder disorders, ischemia–reperfusion injuries of the testes, erectile dysfunction, and penile enlargement. Moreover, they have proven effective in Peyronie disease and ischemic priapism. New tissue-engineering approaches for cystoplasty and urethral stricture repair are described, in which multipotent stem cells are adsorbed onto various graft materials before surgery. The high therapeutic efficacy of cell therapy is most likely associated with its ability to stimulate regeneration and angiogenesis, restore microcirculation and innervation, inhibit inflammation and apoptosis, and reduce tissue injury and fibrosis. Only a small fraction of implanted multipotent stem cells remain viable and differentiate into smooth muscle and endothelial cells. The primary effect of multipotent stem cells is most likely mediated by paracrine mechanisms. No severe adverse effects have been reported following the clinical application of multipotent stem cells.

Full Text

Restricted Access

About the authors

Igor V. Maiborodin

Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences; Novosibirsk Medical and Dental Institute Dentmaster

Author for correspondence.
Email: imai@mail.ru
ORCID iD: 0000-0002-8182-5084
SPIN-code: 8626-5394

MD, Dr. Sci. (Medicine), Professor

Russian Federation, Novosibirsk; Novosibirsk

Anton Yu. Tsukanov

Omsk State Medical University

Email: autt@mail.ru
ORCID iD: 0000-0002-3497-5856
SPIN-code: 9310-1220

MD, Dr. Sci. (Medicine), Professor

Russian Federation, Omsk

Gennadiy Yu. Yarin

Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences

Email: gennadiyyarin@gmail.com
ORCID iD: 0000-0003-2011-1253
SPIN-code: 7560-2751

MD, Cand. Sci. (Medicine)

Russian Federation, Novosibirsk

Boris V. Sheplev

Novosibirsk Medical and Dental Institute Dentmaster

Email: shepa@icloud.com
ORCID iD: 0009-0008-4140-3531
SPIN-code: 9905-4138

MD, Dr. Sci. (Medicine)

Russian Federation, Novosibirsk

Andrey I. Shevela

Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences

Email: ashevela@mail.ru
ORCID iD: 0000-0002-3164-9377
SPIN-code: 5674-1975

MD, Dr. Sci. (Medicine), Professor

Russian Federation, Novosibirsk

References

  1. Adamowicz J, Kuffel B, Van Breda SV, et al. Reconstructive urology and tissue engineering: Converging developmental paths. J Tissue Eng Regen Med. 2019;13(3):522–533. doi: 10.1002/term.2812
  2. Gallo F, Ninotta G, Schenone M, et al. Advances in stem cell therapy for male stress urinary incontinence. Expert Opin Biol Ther. 2019;19(4):293–300. doi: 10.1080/14712598.2019.1578343
  3. Huang X, Wang H, Xu Y. Induced pluripotent stem cells (iPSC)-derived mesenchymal stem cells (MSCS) showed comparable effects in repair of acute kidney injury as compared to adult MSCs. Urol J. 2020;17(2):204–209. doi: 10.22037/uj.v0i0.5362
  4. Zou B, Wang D, Zhong J, et al. Mesenchymal stem cells attenuate hyperoxaluria-induced kidney injury and crystal depositions via inhibiting the activation of NLRP3 inflammasome. Life Sci. 2025;371:123608. doi: 10.1016/j.lfs.2025.123608
  5. Xiong G, Tao L, Ma W-J, et al. Urine-derived stem cells for the therapy of diabetic nephropathy mouse model. Eur Rev Med Pharmacol Sci. 2020;24(3):1316–1324. doi: 10.26355/eurrev_202002_20189
  6. Hsiao P-J, Kao W-Y, Sung L-C, et al. The role of mesenchymal stem cells in treating diabetic kidney disease: immunomodulatory effects and kidney regeneration. Int J Med Sci. 2025;22(7):1720–1735. doi: 10.7150/ijms.103806
  7. Bury MI, Fuller NJ, Wang X, et al. Multipotent bone marrow cell-seeded polymeric composites drive long-term, definitive urinary bladder tissue regeneration. PNAS Nexus. 2024;3(2):pgae038. doi: 10.1093/pnasnexus/pgae038
  8. Matsumoto Y, Imamura T, Kitahara R, et al. Bi-layered adipose mesenchymal cell sheets improve bladder compliance in spinal cord-injured rats. Tissue Eng Part A. 2025;31(9–10):409–418. doi: 10.1089/ten.TEA.2024.0115
  9. Hendawy H, Farag A, Elhaieg A, et al. Enhanced bladder regeneration with adipose-derived stem cell-seeded silk fibroin scaffolds: A comparative analysis. Biomimetics (Basel). 2025;10(2):93. doi: 10.3390/biomimetics10020093
  10. Pokrywczynska M, Jundzill A, Rasmus M, et al. Understanding the role of mesenchymal stem cells in urinary bladder regeneration—a preclinical study on a porcine model. Stem Cell Res Ther. 2018;9(1):328. doi: 10.1186/s13287-018-1070-3
  11. Wang Z, Yu Y, Jin L, et al. HucMSC exosomes attenuate partial bladder outlet obstruction-induced renal injury and cell proliferation via the Wnt/β-catenin pathway. Eur J Pharmacol. 2023;952:175523. doi: 10.1016/j.ejphar.2023.175523
  12. Chiang BJ, Liao CH, Mao SH, Chien CT. Adipose-derived stem cells and their derived microvesicles ameliorate detrusor overactivity secondary to bilateral partial iliac arterial occlusion-induced bladder ischemia. Int J Mol Sci. 2021;22(13):7000. doi: 10.3390/ijms22137000
  13. Huang Y, Gao J, Zhou Y, et al. Therapeutic effect of integrin-linked kinase gene-modified bone marrow-derived mesenchymal stem cells for streptozotocin-induced diabetic cystopathy in a rat model. Stem Cell Res Ther. 2020;11(1):278. doi: 10.1186/s13287-020-01795-4
  14. Liang C-C, Shaw SW, Hsieh W-C, et al. Bladder dysfunction in hypoestrogenic rats with metabolic syndrome can be ameliorated after amniotic fluid stem cell treatment. Stem Cells Transl Med. 2025;14(3):szae100. doi: 10.1093/stcltm/szae100
  15. Salehi-Pourmehr H, Rahbarghazi R, Mahmoudi J, et al. Intra-bladder wall transplantation of bone marrow mesenchymal stem cells improved urinary bladder dysfunction following spinal cord injury. Life Sci. 2019;221:20–28. doi: 10.1016/j.lfs.2019.02.011
  16. Maiborodin IV, Yarin GYu, Vilgelmi IA, et al. The cell technologies in modification of mesh materials used in urology. Urologiia. 2021;(2):94–99. doi: 10.18565/urology.2021.2.94-99 EDN: DOADSX
  17. Maiborodin I, Yarin G, Marchukov S, et al. Cell technologies in the stress urinary incontinence correction. Biomedicines. 2022;10(2):309. doi: 10.3390/biomedicines10020309
  18. Fang C, Zeng Z, Ye J, et al. Progress of mesenchymal stem cells affecting extracellular matrix metabolism in the treatment of female stress urinary incontinence. Stem Cell Res Ther. 2025;16(1):95. doi: 10.1186/s13287-025-04220-w
  19. Dissaranan C, Cruz MA, Kiedrowski MJ, et al. Rat mesenchymal stem cell secretome promotes elastogenesis and facilitates recovery from simulated childbirth injury. Cell Transplant. 2014;23(11):1395–406. doi: 10.3727/096368913X670921
  20. Deng K, Lin DL, Hanzlicek B, et al. Mesenchymal stem cells and their secretome partially restore nerve and urethral function in a dual muscle and nerve injury stress urinary incontinence model. Am J Physiol Renal Physiol. 2015;308(2):F92–F100. doi: 10.1152/ajprenal.00510.2014
  21. Janssen K, Lin DL, Hanzlicek B, et al. Multiple doses of stem cells maintain urethral function in a model of neuromuscular injury resulting in stress urinary incontinence. Am J Physiol Renal Physiol. 2019;317(4):F1047–F1057. doi: 10.1152/ajprenal.00173.2019
  22. Daneshpajooh A, Farsinejad A, Derakhshani A, et al. Comparing periurethral injection of autologous muscle-derived stem cell and fibroblasts with mid-urethral sling surgery in the treatment of female stress urinary incontinence: A randomized clinical trial. J Stem Cells Regen Med. 2022;18(2):43–51. doi: 10.46582/jsrm.1802008
  23. Mahboubeh M, Hamid P, Azar D, et al. Short and medium-term results of the autologous adult mucosa stem cell therapy compared with mini-sling surgery in the treatment of women’s stress urinary incontinence; a randomized clinical trial. Curr Stem Cell Res Ther. 2023;18(2):276–283. doi: 10.2174/1574888X17666220330010453
  24. Feng Z, Chen H, Fu T, et al. miR-21 modification enhances the performance of adipose tissue-derived mesenchymal stem cells for counteracting urethral stricture formation. J Cell Mol Med. 2018;22(11):5607–5616. doi: 10.1111/jcmm.13834
  25. Rashidbenam Z, Jasman MH, Hafez P, et al. Overview of urethral reconstruction by tissue engineering: Current strategies, clinical status and future direction. Tissue Eng Regen Med. 2019;16(4):365–384. doi: 10.1007/s13770-019-00193-z
  26. Tian B, Song L, Liang T, et al. Repair of urethral defects by an adipose mesenchymal stem cellporous silk fibroin material. Mol Med Rep. 2018;18(1):209–215. doi: 10.3892/mmr.2018.9001
  27. Tavakkoli Tabassi K, Tafazoli N, Hamidi Alamdari D, Soltani S. Penile enhancement using biodegradable scaffolds covered with platelet-rich plasma-fibrin glue, mesenchymal stem cells for micropenis. Urol J. 2024;21(2):126–132. doi: 10.22037/uj.v20i.7915
  28. Levy JA, Marchand M, Iorio L, et al. Effects of stem cell treatment in human patients with Peyronie disease. J Am Osteopath Assoc. 2015;115(10): e8–e13. doi: 10.7556/jaoa.2015.124
  29. Lander EB, Berman MH, See JR. Stromal vascular fraction combined with shock wave for the treatment of Peyronie’s disease. Plast Reconstr Surg Glob Open. 2016;4(3):e631. doi: 10.1097/GOX.0000000000000622
  30. Kılıç E, Çolakerol A, Temiz MZ, et al. Intracavernosal mesenchymal stem cell therapy in ischaemic priapism: an experimental study. Int Urol Nephrol. 2025;57(3):723–734. doi: 10.1007/s11255-024-04248-6
  31. Moon HW, Kim IG, Kim MY, et al. Erectile dysfunction treatment using stem cell delivery patch in a cavernous nerve injury rat model. Bioengineering (Basel). 2023;10(6):635. doi: 10.3390/bioengineering10060635
  32. Kennedy A, Shah M, Geisenhoff A, et al. Patient reported health related quality of life outcomes after viable cryopreserved umbilical tissue placement directly over spared neurovascular bundles after robotic assisted radical prostatectomy. J Robot Surg. 2024;19(1):10. doi: 10.1007/s11701-024-02101-7
  33. Yang M, Chen X, Zhang M, et al. hUC-MSC preserves erectile function by restoring mitochondrial mass of penile smooth muscle cells in a rat model of cavernous nerve injury via SIRT1/PGC-1a/TFAM signaling. Biol Res. 2025;58(1):8. doi: 10.1186/s40659-024-00578-y
  34. Zhang X, Yang M, Chen X, et al. Melatonin-pretreated mesenchymal stem cell-derived exosomes alleviate cavernous fibrosis in a rat model of nerve injury-induced erectile dysfunction via miR-145-5p/TGF-β/Smad axis. Stem Cell Res Ther. 2025;16(1):96. doi: 10.1186/s13287-025-04173-0
  35. Haahr MK, Harken Jensen C, Toyserkani NM, et al. A 12-month follow-up after a single intracavernous injection of autologous adipose-derived regenerative cells in patients with erectile dysfunction following radical prostatectomy: An open-label phase I clinical trial. Urology. 2018;121:203.e6–203.e13. doi: 10.1016/j.urology.2018.06.018
  36. Kennedy A, Shah M, Geisenhoff A, et al. Correction: Patient reported health related quality of life outcomes after viable cryopreserved umbilical tissue placement directly over spared neurovascular bundles after robotic assisted radical prostatectomy. J Robot Surg. 2025;19(1):185. doi: 10.1007/s11701-025-02290-9
  37. Gu X, Thakker PU, Matz EL, et al. Dynamic changes in erectile function and histological architecture after intracorporal injection of human placental stem cells in a pelvic neurovascular injury rat model. J Sex Med. 2020;17(3):400–411. doi: 10.1016/j.jsxm.2019.12.002
  38. Zheng H, Bai Z, Xu Y, et al. Effects of cells self-aggregation in the treatment of neurogenic erectile dysfunction with traditional single cell suspension of adipose-derived stem cells. Urology. 2021;158:102–109. doi: 10.1016/j.urology.2021.09.002
  39. Maiborodin I, Shevela A, Toder M, et al. Multipotent stromal cell extracellular vesicle distribution in distant organs after introduction into a bone tissue defect of a limb. Life (Basel). 2021;11(4):306. doi: 10.3390/life11040306
  40. Maiborodin IV, Maslov RV, Ryaguzov ME, et al. Dissemination of multipotent stromal cells in the organism after their injection into intact and resected liver in the experiment. Bull Exp Biol Med. 2022;174(1):116–124. doi: 10.1007/s10517-022-05659-0
  41. Albayrak Ö, Şener TE, Erşahin M, et al. Mesenchymal stem cell therapy improves erectile dysfunction in experimental spinal cord injury. Int J Impot Res. 2020;32(3):308–316. doi: 10.1038/s41443-019-0168-1
  42. Iskakov Y, Omarbayev R, Nugumanov R, et al. Treatment of erectile dysfunction by intracavernosal administration of mesenchymal stem cells in patients with diabetes mellitus. Int Braz J Urol. 2024;50(4):386–397. doi: 10.1590/S1677-5538.IBJU.2024.0100
  43. Al Demour S, Jafar H, Adwan S, et al. Safety and potential therapeutic effect of two intracavernous autologous bone marrow derived mesenchymal stem cells injections in diabetic patients with erectile dysfunction: An open label phase I clinical trial. Urol Int. 2018;101(3):358–365. doi: 10.1159/000492120
  44. Al Demour S, Adwan S, Jafar H, et al. Safety and efficacy of 2 intracavernous injections of allogeneic Wharton’s jelly-derived mesenchymal stem cells in diabetic patients with erectile dysfunction: Phase 1/2 clinical trial. Urol Int. 2021;105(11–12):935–943. doi: 10.1159/000517364
  45. Levy JA, Marchand M, Iorio L, et al. Determining the feasibility of managing erectile dysfunction in humans with placental-derived stem cells. J Am Osteopath Assoc. 2016;116(1):e1–e5. doi: 10.7556/jaoa.2016.007
  46. Protogerou V, Michalopoulos E, Mallis P, et al. Administration of adipose derived mesenchymal stem cells and platelet lysate in erectile dysfunction: A single center pilot study. Bioengineering (Basel). 2019;6(1):21. doi: 10.3390/bioengineering6010021
  47. Wu J-H, Wang D-Y, Sheng L, et al. Human umbilical cord Wharton’s jelly-derived mesenchymal stem cell transplantation could improve diabetic intracavernosal pressure. Asian J Androl. 2022;24(2):171–175. doi: 10.4103/aja.aja_33_21
  48. Mukti AI, Ilyas S, Warli SM, et al. Umbilical cord-derived mesenchymal stem cells improve TGF-β, α-SMA and collagen on erectile dysfunction in Streptozotocin-induced diabetic rats. Med Arch. 2022;76(1):4–11. doi: 10.5455/medarh.2022.76.4-11
  49. Wang S, Zhang A, Liu K, et al. A study of diabetes-induced erectile dysfunction treated with human umbilical cord mesenchymal stem cells. Andrologia. 2022;54(7):e14440. doi: 10.1111/and.14440
  50. Chen S, Zhu J, Wang M, et al. Comparison of the therapeutic effects of adiposederived and bone marrow mesenchymal stem cells on erectile dysfunction in diabetic rats. Int J Mol Med. 2019;44(3):1006–1014. doi: 10.3892/ijmm.2019.4254
  51. Yang J, Yu Z, Zhang Y, et al. Preconditioning of adipose-derived stem cells by phosphodiesterase-5 inhibition enhances therapeutic efficacy against diabetes-induced erectile dysfunction. Andrology. 2020;8(1):231–240. doi: 10.1111/andr.12661
  52. Kim SW, Zhu GQ, Bae WJ. Mesenchymal stem cells treatment for erectile dysfunction in diabetic rats. Sex Med Rev. 2020;8(1):114–121. doi: 10.1016/j.sxmr.2019.09.003
  53. Sun X, Luo L, Li J. LncRNA MALAT1 facilitates BM-MSCs differentiation into endothelial cells via targeting miR-206/VEGFA axis. Cell Cycle. 2020;19(22):3018–3028. doi: 10.1080/15384101.2020.1829799
  54. Quaade ML, Dhumale P, Comerma Steffensen SG, et al. Adipose-derived stem cells from type 2 diabetic rats retain positive effects in a rat model of erectile dysfunction. Int J Mol Sci. 2022;23(3):1692. doi: 10.3390/ijms23031692
  55. Lou K, Hu J, Tong J, Wang Z. Nanoscale therapeutics for erectile dysfunction: a meta-analysis of stem cell-derived extracellular vesicles as natural nanoparticles in diabetic rat models. Stem Cell Res Ther. 2025;16(1):278. doi: 10.1186/s13287-025-04389-0
  56. Zhang J, Zhao D, Zang Z, et al. miR-200a-3p-enriched MSC-derived extracellular vesicles reverse erectile function in diabetic rats by targeting Keap1. Biomed Pharmacother. 2024;177:116964. doi: 10.1016/j.biopha.2024.116964
  57. Zhou L, Song K, Xu L, et al. Protective Effects of uncultured adipose-derived stromal vascular fraction on testicular injury induced by torsion-detorsion in rats. Stem Cells Transl Med. 2019;8(4):383–391. doi: 10.1002/sctm.18-0063
  58. Chen Y-T, Chuang F-C, Yang C-C, et al. Combined melatonin-adipose derived mesenchymal stem cells therapy effectively protected the testis from testicular torsion-induced ischemia-reperfusion injury. Stem Cell Res Ther. 2021;12(1):370. doi: 10.1186/s13287-021-02439-x
  59. Ramesh M, Mojaverrostami S, Khadivi F, et al. Protective effects of human amniotic membrane derived mesenchymal stem cells (hAMSCs) secreted factors on mouse spermatogenesis and sperm chromatin condensation following unilateral testicular torsion. Ann Anat. 2023;249:152084. doi: 10.1016/j.aanat.2023.152084
  60. Zhankina R, Zhanbyrbekuly U, Askarov M, et al. Improving fertility in non-obstructive azoospermia: results from an autologous bone Mar-row-Derived mesenchymal Stromal/Stem cell phase I clinical trial. Int J Fertil Steril. 2024;18(S1):60–70. doi: 10.22074/ijfs.2023.2005045.1480
  61. Toriyama K, Ebisawa K, Yagi S, et al. Liposuction for autologous adipose-derived regenerative cells: Preliminary results of donor-site complications in male stress urinary incontinence. JPRAS Open. 2019;19:121–124. doi: 10.1016/j.jpra.2019.01.003
  62. Bieri M, Said E, Antonini G, et al. Phase I and registry study of autologous bone marrow concentrate evaluated in PDE5 inhibitor refractory erectile dysfunction. J Transl Med. 2020;18(1):24. doi: 10.1186/s12967-019-02195-w
  63. Fode M, Nadler N, Lund L, Azawi N. Feasibility of minimally invasive, same-day injection of autologous adipose-derived stem cells in the treatment of erectile dysfunction. Scand J Urol. 2023;57(1–6):110–114. doi: 10.1080/21681805.2022.2162117
  64. Manfredi C, Boeri L, Sokolakis I, et al. Cell therapy for male sexual dysfunctions: systematic review and position statements from the European Society for Sexual Medicine. Sex Med. 2024;12(1):qfad071. doi: 10.1093/sexmed/qfad071

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Eco-Vector

License URL: https://eco-vector.com/for_authors.php#07

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 89281 от 21.04.2025.