Клеточные технологии в коррекции урологической патологии
- Авторы: Майбородин И.В.1,2, Цуканов А.Ю.3, Ярин Г.Ю.1, Шеплев Б.В.2, Шевела А.И.1
-
Учреждения:
- Институт химической биологии и фундаментальной медицины СО РАН
- Новосибирский медико-стоматологический институт Дентмастер
- Омский государственный медицинский университет
- Выпуск: Том 15, № 3 (2025)
- Страницы: 293-306
- Раздел: Научные обзоры
- Статья получена: 14.07.2025
- Статья одобрена: 31.08.2025
- Статья опубликована: 30.09.2025
- URL: https://journals.eco-vector.com/uroved/article/view/687494
- DOI: https://doi.org/10.17816/uroved687494
- EDN: https://elibrary.ru/GDLBMU
- ID: 687494
Цитировать
Полный текст
Аннотация
Использование мультипотентных стволовых клеток открывает новые возможности в разных областях медицины, в том числе в урологии. В статье подробно описаны результаты экспериментальных и клинических исследований, свидетельствующие об эффективности мультипотентных стволовых клеток для лечения заболеваний урологического профиля. Применение мультипотентных стволовых клеток приводило к снижению выраженности почечной недостаточности, к коррекции недержания мочи, к уменьшению органических и функциональных расстройств мочевого пузыря, ишемически-реперфузионных повреждений яичек, эректильной дисфункции, к увеличению полового члена, а также оказалось эффективным при болезни Пейрони и ишемическом приапизме. Представлены новые методы тканевой инженерии для цистопластики и лечения стриктур уретры, когда перед вмешательством мультипотентные стволовые клетки адсорбируют на различных трансплантатах. Высокая эффективность клеточной терапии, скорее всего, связана со стимулированием регенерации и ангиогенеза, с восстановлением микроциркуляции и иннервации, с ингибицией воспалительного процесса и апоптоза, уменьшением повреждения тканей и степени фиброза. Только небольшая часть имплантированных мультипотентных стволовых клеток остается жизнеспособной и дифференцируется в гладкомышечные и эндотелиальные клетки. Основной эффект мультипотентных стволовых клеток, наиболее вероятно, обусловлен паракринным действием. После применения мультипотентных стволовых клеток в клинических условиях тяжелые побочные эффекты не выявлены.
Ключевые слова
Полный текст
Об авторах
Игорь Валентинович Майбородин
Институт химической биологии и фундаментальной медицины СО РАН; Новосибирский медико-стоматологический институт Дентмастер
Автор, ответственный за переписку.
Email: imai@mail.ru
ORCID iD: 0000-0002-8182-5084
SPIN-код: 8626-5394
д-р мед. наук, профессор
Россия, Новосибирск; НовосибирскАнтон Юрьевич Цуканов
Омский государственный медицинский университет
Email: autt@mail.ru
ORCID iD: 0000-0002-3497-5856
SPIN-код: 9310-1220
д-р мед. наук, профессор
Россия, ОмскГеннадий Юрьевич Ярин
Институт химической биологии и фундаментальной медицины СО РАН
Email: gennadiyyarin@gmail.com
ORCID iD: 0000-0003-2011-1253
SPIN-код: 7560-2751
канд. мед. наук
Россия, НовосибирскБорис Валентинович Шеплев
Новосибирский медико-стоматологический институт Дентмастер
Email: shepa@icloud.com
ORCID iD: 0009-0008-4140-3531
SPIN-код: 9905-4138
д-р мед. наук
Россия, НовосибирскАндрей Иванович Шевела
Институт химической биологии и фундаментальной медицины СО РАН
Email: ashevela@mail.ru
ORCID iD: 0000-0002-3164-9377
SPIN-код: 5674-1975
д-р мед. наук, профессор
Россия, НовосибирскСписок литературы
- Adamowicz J, Kuffel B, Van Breda SV, et al. Reconstructive urology and tissue engineering: Converging developmental paths. J Tissue Eng Regen Med. 2019;13(3):522–533. doi: 10.1002/term.2812
- Gallo F, Ninotta G, Schenone M, et al. Advances in stem cell therapy for male stress urinary incontinence. Expert Opin Biol Ther. 2019;19(4):293–300. doi: 10.1080/14712598.2019.1578343
- Huang X, Wang H, Xu Y. Induced pluripotent stem cells (iPSC)-derived mesenchymal stem cells (MSCS) showed comparable effects in repair of acute kidney injury as compared to adult MSCs. Urol J. 2020;17(2):204–209. doi: 10.22037/uj.v0i0.5362
- Zou B, Wang D, Zhong J, et al. Mesenchymal stem cells attenuate hyperoxaluria-induced kidney injury and crystal depositions via inhibiting the activation of NLRP3 inflammasome. Life Sci. 2025;371:123608. doi: 10.1016/j.lfs.2025.123608
- Xiong G, Tao L, Ma W-J, et al. Urine-derived stem cells for the therapy of diabetic nephropathy mouse model. Eur Rev Med Pharmacol Sci. 2020;24(3):1316–1324. doi: 10.26355/eurrev_202002_20189
- Hsiao P-J, Kao W-Y, Sung L-C, et al. The role of mesenchymal stem cells in treating diabetic kidney disease: immunomodulatory effects and kidney regeneration. Int J Med Sci. 2025;22(7):1720–1735. doi: 10.7150/ijms.103806
- Bury MI, Fuller NJ, Wang X, et al. Multipotent bone marrow cell-seeded polymeric composites drive long-term, definitive urinary bladder tissue regeneration. PNAS Nexus. 2024;3(2):pgae038. doi: 10.1093/pnasnexus/pgae038
- Matsumoto Y, Imamura T, Kitahara R, et al. Bi-layered adipose mesenchymal cell sheets improve bladder compliance in spinal cord-injured rats. Tissue Eng Part A. 2025;31(9–10):409–418. doi: 10.1089/ten.TEA.2024.0115
- Hendawy H, Farag A, Elhaieg A, et al. Enhanced bladder regeneration with adipose-derived stem cell-seeded silk fibroin scaffolds: A comparative analysis. Biomimetics (Basel). 2025;10(2):93. doi: 10.3390/biomimetics10020093
- Pokrywczynska M, Jundzill A, Rasmus M, et al. Understanding the role of mesenchymal stem cells in urinary bladder regeneration—a preclinical study on a porcine model. Stem Cell Res Ther. 2018;9(1):328. doi: 10.1186/s13287-018-1070-3
- Wang Z, Yu Y, Jin L, et al. HucMSC exosomes attenuate partial bladder outlet obstruction-induced renal injury and cell proliferation via the Wnt/β-catenin pathway. Eur J Pharmacol. 2023;952:175523. doi: 10.1016/j.ejphar.2023.175523
- Chiang BJ, Liao CH, Mao SH, Chien CT. Adipose-derived stem cells and their derived microvesicles ameliorate detrusor overactivity secondary to bilateral partial iliac arterial occlusion-induced bladder ischemia. Int J Mol Sci. 2021;22(13):7000. doi: 10.3390/ijms22137000
- Huang Y, Gao J, Zhou Y, et al. Therapeutic effect of integrin-linked kinase gene-modified bone marrow-derived mesenchymal stem cells for streptozotocin-induced diabetic cystopathy in a rat model. Stem Cell Res Ther. 2020;11(1):278. doi: 10.1186/s13287-020-01795-4
- Liang C-C, Shaw SW, Hsieh W-C, et al. Bladder dysfunction in hypoestrogenic rats with metabolic syndrome can be ameliorated after amniotic fluid stem cell treatment. Stem Cells Transl Med. 2025;14(3):szae100. doi: 10.1093/stcltm/szae100
- Salehi-Pourmehr H, Rahbarghazi R, Mahmoudi J, et al. Intra-bladder wall transplantation of bone marrow mesenchymal stem cells improved urinary bladder dysfunction following spinal cord injury. Life Sci. 2019;221:20–28. doi: 10.1016/j.lfs.2019.02.011
- Maiborodin IV, Yarin GYu, Vilgelmi IA, et al. The cell technologies in modification of mesh materials used in urology. Urologiia. 2021;(2):94–99. doi: 10.18565/urology.2021.2.94-99 EDN: DOADSX
- Maiborodin I, Yarin G, Marchukov S, et al. Cell technologies in the stress urinary incontinence correction. Biomedicines. 2022;10(2):309. doi: 10.3390/biomedicines10020309
- Fang C, Zeng Z, Ye J, et al. Progress of mesenchymal stem cells affecting extracellular matrix metabolism in the treatment of female stress urinary incontinence. Stem Cell Res Ther. 2025;16(1):95. doi: 10.1186/s13287-025-04220-w
- Dissaranan C, Cruz MA, Kiedrowski MJ, et al. Rat mesenchymal stem cell secretome promotes elastogenesis and facilitates recovery from simulated childbirth injury. Cell Transplant. 2014;23(11):1395–406. doi: 10.3727/096368913X670921
- Deng K, Lin DL, Hanzlicek B, et al. Mesenchymal stem cells and their secretome partially restore nerve and urethral function in a dual muscle and nerve injury stress urinary incontinence model. Am J Physiol Renal Physiol. 2015;308(2):F92–F100. doi: 10.1152/ajprenal.00510.2014
- Janssen K, Lin DL, Hanzlicek B, et al. Multiple doses of stem cells maintain urethral function in a model of neuromuscular injury resulting in stress urinary incontinence. Am J Physiol Renal Physiol. 2019;317(4):F1047–F1057. doi: 10.1152/ajprenal.00173.2019
- Daneshpajooh A, Farsinejad A, Derakhshani A, et al. Comparing periurethral injection of autologous muscle-derived stem cell and fibroblasts with mid-urethral sling surgery in the treatment of female stress urinary incontinence: A randomized clinical trial. J Stem Cells Regen Med. 2022;18(2):43–51. doi: 10.46582/jsrm.1802008
- Mahboubeh M, Hamid P, Azar D, et al. Short and medium-term results of the autologous adult mucosa stem cell therapy compared with mini-sling surgery in the treatment of women’s stress urinary incontinence; a randomized clinical trial. Curr Stem Cell Res Ther. 2023;18(2):276–283. doi: 10.2174/1574888X17666220330010453
- Feng Z, Chen H, Fu T, et al. miR-21 modification enhances the performance of adipose tissue-derived mesenchymal stem cells for counteracting urethral stricture formation. J Cell Mol Med. 2018;22(11):5607–5616. doi: 10.1111/jcmm.13834
- Rashidbenam Z, Jasman MH, Hafez P, et al. Overview of urethral reconstruction by tissue engineering: Current strategies, clinical status and future direction. Tissue Eng Regen Med. 2019;16(4):365–384. doi: 10.1007/s13770-019-00193-z
- Tian B, Song L, Liang T, et al. Repair of urethral defects by an adipose mesenchymal stem cellporous silk fibroin material. Mol Med Rep. 2018;18(1):209–215. doi: 10.3892/mmr.2018.9001
- Tavakkoli Tabassi K, Tafazoli N, Hamidi Alamdari D, Soltani S. Penile enhancement using biodegradable scaffolds covered with platelet-rich plasma-fibrin glue, mesenchymal stem cells for micropenis. Urol J. 2024;21(2):126–132. doi: 10.22037/uj.v20i.7915
- Levy JA, Marchand M, Iorio L, et al. Effects of stem cell treatment in human patients with Peyronie disease. J Am Osteopath Assoc. 2015;115(10): e8–e13. doi: 10.7556/jaoa.2015.124
- Lander EB, Berman MH, See JR. Stromal vascular fraction combined with shock wave for the treatment of Peyronie’s disease. Plast Reconstr Surg Glob Open. 2016;4(3):e631. doi: 10.1097/GOX.0000000000000622
- Kılıç E, Çolakerol A, Temiz MZ, et al. Intracavernosal mesenchymal stem cell therapy in ischaemic priapism: an experimental study. Int Urol Nephrol. 2025;57(3):723–734. doi: 10.1007/s11255-024-04248-6
- Moon HW, Kim IG, Kim MY, et al. Erectile dysfunction treatment using stem cell delivery patch in a cavernous nerve injury rat model. Bioengineering (Basel). 2023;10(6):635. doi: 10.3390/bioengineering10060635
- Kennedy A, Shah M, Geisenhoff A, et al. Patient reported health related quality of life outcomes after viable cryopreserved umbilical tissue placement directly over spared neurovascular bundles after robotic assisted radical prostatectomy. J Robot Surg. 2024;19(1):10. doi: 10.1007/s11701-024-02101-7
- Yang M, Chen X, Zhang M, et al. hUC-MSC preserves erectile function by restoring mitochondrial mass of penile smooth muscle cells in a rat model of cavernous nerve injury via SIRT1/PGC-1a/TFAM signaling. Biol Res. 2025;58(1):8. doi: 10.1186/s40659-024-00578-y
- Zhang X, Yang M, Chen X, et al. Melatonin-pretreated mesenchymal stem cell-derived exosomes alleviate cavernous fibrosis in a rat model of nerve injury-induced erectile dysfunction via miR-145-5p/TGF-β/Smad axis. Stem Cell Res Ther. 2025;16(1):96. doi: 10.1186/s13287-025-04173-0
- Haahr MK, Harken Jensen C, Toyserkani NM, et al. A 12-month follow-up after a single intracavernous injection of autologous adipose-derived regenerative cells in patients with erectile dysfunction following radical prostatectomy: An open-label phase I clinical trial. Urology. 2018;121:203.e6–203.e13. doi: 10.1016/j.urology.2018.06.018
- Kennedy A, Shah M, Geisenhoff A, et al. Correction: Patient reported health related quality of life outcomes after viable cryopreserved umbilical tissue placement directly over spared neurovascular bundles after robotic assisted radical prostatectomy. J Robot Surg. 2025;19(1):185. doi: 10.1007/s11701-025-02290-9
- Gu X, Thakker PU, Matz EL, et al. Dynamic changes in erectile function and histological architecture after intracorporal injection of human placental stem cells in a pelvic neurovascular injury rat model. J Sex Med. 2020;17(3):400–411. doi: 10.1016/j.jsxm.2019.12.002
- Zheng H, Bai Z, Xu Y, et al. Effects of cells self-aggregation in the treatment of neurogenic erectile dysfunction with traditional single cell suspension of adipose-derived stem cells. Urology. 2021;158:102–109. doi: 10.1016/j.urology.2021.09.002
- Maiborodin I, Shevela A, Toder M, et al. Multipotent stromal cell extracellular vesicle distribution in distant organs after introduction into a bone tissue defect of a limb. Life (Basel). 2021;11(4):306. doi: 10.3390/life11040306
- Maiborodin IV, Maslov RV, Ryaguzov ME, et al. Dissemination of multipotent stromal cells in the organism after their injection into intact and resected liver in the experiment. Bull Exp Biol Med. 2022;174(1):116–124. doi: 10.1007/s10517-022-05659-0
- Albayrak Ö, Şener TE, Erşahin M, et al. Mesenchymal stem cell therapy improves erectile dysfunction in experimental spinal cord injury. Int J Impot Res. 2020;32(3):308–316. doi: 10.1038/s41443-019-0168-1
- Iskakov Y, Omarbayev R, Nugumanov R, et al. Treatment of erectile dysfunction by intracavernosal administration of mesenchymal stem cells in patients with diabetes mellitus. Int Braz J Urol. 2024;50(4):386–397. doi: 10.1590/S1677-5538.IBJU.2024.0100
- Al Demour S, Jafar H, Adwan S, et al. Safety and potential therapeutic effect of two intracavernous autologous bone marrow derived mesenchymal stem cells injections in diabetic patients with erectile dysfunction: An open label phase I clinical trial. Urol Int. 2018;101(3):358–365. doi: 10.1159/000492120
- Al Demour S, Adwan S, Jafar H, et al. Safety and efficacy of 2 intracavernous injections of allogeneic Wharton’s jelly-derived mesenchymal stem cells in diabetic patients with erectile dysfunction: Phase 1/2 clinical trial. Urol Int. 2021;105(11–12):935–943. doi: 10.1159/000517364
- Levy JA, Marchand M, Iorio L, et al. Determining the feasibility of managing erectile dysfunction in humans with placental-derived stem cells. J Am Osteopath Assoc. 2016;116(1):e1–e5. doi: 10.7556/jaoa.2016.007
- Protogerou V, Michalopoulos E, Mallis P, et al. Administration of adipose derived mesenchymal stem cells and platelet lysate in erectile dysfunction: A single center pilot study. Bioengineering (Basel). 2019;6(1):21. doi: 10.3390/bioengineering6010021
- Wu J-H, Wang D-Y, Sheng L, et al. Human umbilical cord Wharton’s jelly-derived mesenchymal stem cell transplantation could improve diabetic intracavernosal pressure. Asian J Androl. 2022;24(2):171–175. doi: 10.4103/aja.aja_33_21
- Mukti AI, Ilyas S, Warli SM, et al. Umbilical cord-derived mesenchymal stem cells improve TGF-β, α-SMA and collagen on erectile dysfunction in Streptozotocin-induced diabetic rats. Med Arch. 2022;76(1):4–11. doi: 10.5455/medarh.2022.76.4-11
- Wang S, Zhang A, Liu K, et al. A study of diabetes-induced erectile dysfunction treated with human umbilical cord mesenchymal stem cells. Andrologia. 2022;54(7):e14440. doi: 10.1111/and.14440
- Chen S, Zhu J, Wang M, et al. Comparison of the therapeutic effects of adiposederived and bone marrow mesenchymal stem cells on erectile dysfunction in diabetic rats. Int J Mol Med. 2019;44(3):1006–1014. doi: 10.3892/ijmm.2019.4254
- Yang J, Yu Z, Zhang Y, et al. Preconditioning of adipose-derived stem cells by phosphodiesterase-5 inhibition enhances therapeutic efficacy against diabetes-induced erectile dysfunction. Andrology. 2020;8(1):231–240. doi: 10.1111/andr.12661
- Kim SW, Zhu GQ, Bae WJ. Mesenchymal stem cells treatment for erectile dysfunction in diabetic rats. Sex Med Rev. 2020;8(1):114–121. doi: 10.1016/j.sxmr.2019.09.003
- Sun X, Luo L, Li J. LncRNA MALAT1 facilitates BM-MSCs differentiation into endothelial cells via targeting miR-206/VEGFA axis. Cell Cycle. 2020;19(22):3018–3028. doi: 10.1080/15384101.2020.1829799
- Quaade ML, Dhumale P, Comerma Steffensen SG, et al. Adipose-derived stem cells from type 2 diabetic rats retain positive effects in a rat model of erectile dysfunction. Int J Mol Sci. 2022;23(3):1692. doi: 10.3390/ijms23031692
- Lou K, Hu J, Tong J, Wang Z. Nanoscale therapeutics for erectile dysfunction: a meta-analysis of stem cell-derived extracellular vesicles as natural nanoparticles in diabetic rat models. Stem Cell Res Ther. 2025;16(1):278. doi: 10.1186/s13287-025-04389-0
- Zhang J, Zhao D, Zang Z, et al. miR-200a-3p-enriched MSC-derived extracellular vesicles reverse erectile function in diabetic rats by targeting Keap1. Biomed Pharmacother. 2024;177:116964. doi: 10.1016/j.biopha.2024.116964
- Zhou L, Song K, Xu L, et al. Protective Effects of uncultured adipose-derived stromal vascular fraction on testicular injury induced by torsion-detorsion in rats. Stem Cells Transl Med. 2019;8(4):383–391. doi: 10.1002/sctm.18-0063
- Chen Y-T, Chuang F-C, Yang C-C, et al. Combined melatonin-adipose derived mesenchymal stem cells therapy effectively protected the testis from testicular torsion-induced ischemia-reperfusion injury. Stem Cell Res Ther. 2021;12(1):370. doi: 10.1186/s13287-021-02439-x
- Ramesh M, Mojaverrostami S, Khadivi F, et al. Protective effects of human amniotic membrane derived mesenchymal stem cells (hAMSCs) secreted factors on mouse spermatogenesis and sperm chromatin condensation following unilateral testicular torsion. Ann Anat. 2023;249:152084. doi: 10.1016/j.aanat.2023.152084
- Zhankina R, Zhanbyrbekuly U, Askarov M, et al. Improving fertility in non-obstructive azoospermia: results from an autologous bone Mar-row-Derived mesenchymal Stromal/Stem cell phase I clinical trial. Int J Fertil Steril. 2024;18(S1):60–70. doi: 10.22074/ijfs.2023.2005045.1480
- Toriyama K, Ebisawa K, Yagi S, et al. Liposuction for autologous adipose-derived regenerative cells: Preliminary results of donor-site complications in male stress urinary incontinence. JPRAS Open. 2019;19:121–124. doi: 10.1016/j.jpra.2019.01.003
- Bieri M, Said E, Antonini G, et al. Phase I and registry study of autologous bone marrow concentrate evaluated in PDE5 inhibitor refractory erectile dysfunction. J Transl Med. 2020;18(1):24. doi: 10.1186/s12967-019-02195-w
- Fode M, Nadler N, Lund L, Azawi N. Feasibility of minimally invasive, same-day injection of autologous adipose-derived stem cells in the treatment of erectile dysfunction. Scand J Urol. 2023;57(1–6):110–114. doi: 10.1080/21681805.2022.2162117
- Manfredi C, Boeri L, Sokolakis I, et al. Cell therapy for male sexual dysfunctions: systematic review and position statements from the European Society for Sexual Medicine. Sex Med. 2024;12(1):qfad071. doi: 10.1093/sexmed/qfad071
Дополнительные файлы


