Methods for assessing the effectiveness of using bone morphogenetic proteins in spondylodesis

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

BACKGROUND: Today, growth factors, in particular bone morphogenetic proteins in the composition of osteoplastic materials, are widely used to accelerate bone tissue regeneration after injuries or diseases of the musculoskeletal system. There are various methods for evaluating the effectiveness of using these proteins, in particular, the methods for medical imaging and determining specific markers. Bone loss often occurs after trauma or injury, including surgery. Rapid impairment of bone formation and increased bone resorption, as reflected by biochemical markers of bone metabolism, may cause this bone loss. Therefore, the detection of these markers in patients after spinal fusion using bone morphogenetic proteins is important in assessing the effectiveness of this therapy at various stages of observation in the postoperative period. However, due to the widespread use of bone morphogenetic proteins, their therapeutic efficacy can increasingly be seen in everyday radiological practice. X-ray or computed tomography is usually used to assess the effectiveness of the surgical intervention. Magnetic resonance imaging may be a useful adjunct, however, postoperative magnetic resonance imaging analysis is vulnerable to hardware artifacts. Although there is extensive data in the literature on the outcomes of surgical interventions for spondylodesis using bone morphogenetic proteins, radiographic data and data on the detection of specific markers and their use are scarce.

AIM: In this study, we will discuss the current knowledge about existing and possible methods for evaluating the effectiveness of the use of bone morphogenetic proteins in spondylodesis.

MATERIALS AND METHODS: Using PubMed, Embase, the Cochrane Database, and Google Scholar, we conducted a comprehensive literature search demonstrating possible methods for evaluating the effectiveness of bone morphogenetic proteins in spondylodesis.

RESULTS: This study presents various methods for determining the effectiveness of the use of bone morphogenetic proteins in spondylodesis. In addition, the results of preclinical and clinical studies, which analyzed the effectiveness of the use of bone morphogenetic proteins, have been analyzed.

CONCLUSIONS: To identify the effectiveness of bone morphogenetic proteins in spondylodesis further preclinical and clinical studies are required.

Full Text

Restricted Access

About the authors

Ural F. Mukhametov

Republican Clinical Hospital named after G.G. Kuvatov

Email: ufa.rkbkuv@doctorrb.ru
ORCID iD: 0000-0003-3694-3302

MD, Cand. Sci. (Med.)

Russian Federation, Ufa

Sergey V. Lyulin

Medical Center Carmel

Email: carmel74@yandex.ru
ORCID iD: 0000-0002-2549-1059
SPIN-code: 4968-8680
Scopus Author ID: 6701421057

MD, Dr. Sci. (Med.)

Russian Federation, Chelyabinsk

Dmitry Yu. Borzunov

Ural State Medical University

Email: borzunov@bk.ru
ORCID iD: 0000-0003-3720-5467
SPIN-code: 6858-8005
Scopus Author ID: 17433431500

MD, Dr. Sci. (Med.), Professor

Russian Federation, Ekaterinburg

Ilgiz F. Gareev

Bashkir State Medical University

Author for correspondence.
Email: ilgiz_gareev@mail.ru
ORCID iD: 0000-0002-4965-0835
Scopus Author ID: 57206481534
Russian Federation, Ufa

References

  1. Reid PC, Morr S, Kaiser MG. State of the union: a review of lumbar fusion indications and techniques for degenerative spine disease. J Neurosurg Spine. 2019;31(1):1–14. doi: 10.3171/2019.4.SPINE18915
  2. Siddiqui MM, Sta Ana AR, Yeo W, Yue WM. Bone morphogenic protein is a viable adjunct for fusion in minimally invasive transforaminal lumbar interbody fusion. Asian Spine J. 2016;10(6):1091–1099. doi: 10.4184/asj.2016.10.6.1091
  3. Lowery JW, Rosen V. Bone morphogenetic protein-based therapeutic approaches. Cold Spring Harb Perspect Biol. 2018;10(4):a022327. doi: 10.1101/cshperspect.a022327
  4. de Kunder SL, van Kuijk SMJ, Rijkers K, et al. Transforaminal lumbar interbody fusion (TLIF) versus posterior lumbar interbody fusion (PLIF) in lumbar spondylolisthesis: a systematic review and meta-analysis. Spine J. 2017;17(11):1712–1721. doi: 10.1016/j.spinee.2017.06.018
  5. Burke JF, Dhall SS. Bone morphogenic protein use in spinal surgery. Neurosurg Clin N Am. 2017;28(3):331–334. doi: 10.1016/j.nec.2017.03.001
  6. Formica M, Zanirato A, Cavagnaro L, et al. Extreme lateral interbody fusion in spinal revision surgery: clinical results and complications. Eur Spine J. 2017;26(Suppl 4):464–470. doi: 10.1007/s00586-017-5115-6
  7. Zeng ZY, Xu ZW, He DW, et al. Complications and prevention strategies of oblique lateral interbody fusion technique. Orthop Surg. 2018;10(2):98–106. doi: 10.1111/os.12380
  8. Mendenhall SK, Priddy BH, Mobasser JP, Potts EA. Safety and efficacy of low-dose rhBMP-2 use for anterior cervical fusion. Neurosurg Focus. 2021;50(6):E2. doi: 10.3171/2021.3.FOCUS2171
  9. Ye F, Zeng Z, Wang J, et al. Comparison of the use of rhBMP-7 versus iliac crest autograft in single-level lumbar fusion: a meta-analysis of randomized controlled trials. J Bone Miner Metab. 2018;36(1):119–127. doi: 10.1007/s00774-017-0821-z
  10. François S, Eder V, Belmokhtar K, et al. Synergistic effect of human Bone Morphogenic Protein-2 and Mesenchymal Stromal Cells on chronic wounds through hypoxia-inducible factor-1 α induction. Sci Rep. 2017;7(1):4272. doi: 10.1038/s41598-017-04496-w
  11. Szulc P. Biochemical bone turnover markers in hormonal disorders in adults: a narrative review. J Endocrinol Invest. 2020;43(10):1409–1427. doi: 10.1007/s40618-020-01269-7
  12. Weisbrod LJ, Arnold PM, Leever JD. Radiographic and CT evaluation of recombinant human bone morphogenetic protein-2-assisted cervical spinal interbody fusion. Clin Spine Surg. 2019;32(2):71–79. doi: 10.1097/BSD.0000000000000720
  13. Florencio-Silva R, Sasso GR, Sasso-Cerri E, et al. Biology of bone tissue: Structure, function, and factors that influence bone cells. Biomed Res Int. 2015;2015:421746. doi: 10.1155/2015/421746
  14. Tiwari AK, Goyal A, Prasad J. Modeling cortical bone adaptation using strain gradients. Proc Inst Mech Eng H. 2021;235(6):636–654. doi: 10.1177/09544119211000228
  15. Kylmaoja E, Nakamura M, Tuukkanen J. Osteoclasts and remodeling based bone formation. Curr Stem Cell Res Ther. 2016;11(8):626–633. doi: 10.2174/1574888x10666151019115724
  16. Kenkre JS, Bassett J. The bone remodelling cycle. Ann Clin Biochem. 2018;55(3):308–327. doi: 10.1177/0004563218759371
  17. Katsimbri P. The biology of normal bone remodelling. Eur J Cancer Care (Engl). 2017;26(6). doi: 10.1111/ecc.12740
  18. Bellido T. Osteocyte-driven bone remodeling. Calcif Tissue Int. 2014;94(1):25–34. doi: 10.1007/s00223-013-9774-y
  19. Delaisse JM, Andersen TL, Kristensen HB, et al. Re-thinking the bone remodeling cycle mechanism and the origin of bone loss. Bone. 2020;141:115628. doi: 10.1016/j.bone.2020.115628
  20. Farlay D, Bala Y, Rizzo S, et al. Bone remodeling and bone matrix quality before and after menopause in healthy women. Bone. 2019;128:115030. doi: 10.1016/j.bone.2019.08.003
  21. Chew CK, Clarke BL. Biochemical testing relevant to bone. Endocrinol Metab Clin North Am. 2017;46(3):649–667. doi: 10.1016/j.ecl.2017.04.003
  22. Zaitseva OV, Shandrenko SG, Veliky MM. Biochemical markers of bone collagen type I metabolism. Ukr Biochem J. 2015;87(1):21–32. doi: 10.15407/ubj87.01.021
  23. Khashayar P, Meybodi HA, Amoabediny G, Larijani B. Biochemical markers of bone turnover and their role in osteoporosis diagnosis: a narrative review. Recent Pat Endocr Metab Immune Drug Discov. 2015;9(2):79–89. doi: 10.2174/1872214809666150806105433
  24. Chapurlat RD, Confavreux CB. Novel biological markers of bone: from bone metabolism to bone physiology. Rheumatology (Oxford). 2016;55(10):1714–1725. doi: 10.1093/rheumatology/kev410
  25. Johansson H, Odén A, Kanis JA, et al. A meta-analysis of reference markers of bone turnover for prediction of fracture. Calcif Tissue Int. 2014;94(5):560–567. doi: 10.1007/s00223-014-9842-y
  26. Pagani F, Francucci CM, Moro L. Markers of bone turnover: biochemical and clinical perspectives. J Endocrinol Invest. 2005;28(10 Suppl):8–13.
  27. Camozzi V, Tossi A, Simoni E, et al. Role of biochemical markers of bone remodeling in clinical practice. J Endocrinol Invest. 2007;30(6 Suppl):13–17.
  28. Yoon BH, Yu W. Clinical utility of biochemical marker of bone turnover: fracture risk prediction and bone healing. J Bone Metab. 2018;25(2):73–78. doi: 10.11005/jbm.2018.25.2.73
  29. Kwon S, Wang AH, Sadowski CA, et al. Urinary bone turnover markers as target indicators for monitoring bisphosphonate drug treatment in the management of osteoporosis. Curr Drug Targets. 2018;19(5):451–459. doi: 10.2174/1389450118666170704143529
  30. Tacey A, Hayes A, Zulli A, Levinger I. Osteocalcin and vascular function: is there a cross-talk? Mol Metab. 2021;49:101205. doi: 10.1016/j.molmet.2021.101205
  31. Komori T. What is the function of osteocalcin? J Oral Biosci. 2020;62(3):223–227. doi: 10.1016/j.job.2020.05.004
  32. Gunsser J, Hermann R, Roth A, Lupp A. Comprehensive assessment of tissue and serum parameters of bone metabolism in a series of orthopaedic patients. PLoS One. 2019;14(12):e0227133. doi: 10.1371/journal.pone.0227133
  33. Parveen B, Parveen A, Vohora D. Biomarkers of osteoporosis: an update. Endocr Metab Immune Disord Drug Targets. 2019;19(7):895–912. doi: 10.2174/1871530319666190204165207
  34. Vimalraj S. Alkaline phosphatase: Structure, expression and its function in bone mineralization. Gene. 2020;754:144855. doi: 10.1016/j.gene.2020.144855
  35. Masrour Roudsari J, Mahjoub S. Quantification and comparison of bone-specific alkaline phosphatase with two methods in normal and paget’s specimens. Caspian J Intern Med. 2012;3(3):478–483.
  36. Czech T, Oyewumi MO. Overcoming barriers confronting application of protein therapeutics in bone fracture healing. Drug Deliv Transl Res. 2021;11(3):842–865. doi: 10.1007/s13346-020-00829-x
  37. Spinella-Jaegle S, Roman-Roman S, Faucheu C, et al. Opposite effects of bone morphogenetic protein-2 and transforming growth factor-beta1 on osteoblast differentiation. Bone. 2001;29(4):323–330. doi: 10.1016/s8756-3282(01)00580-4
  38. Zhang Y, Shuang Y, Fu H, et al. Characterization of a shorter recombinant polypeptide chain of bone morphogenetic protein 2 on osteoblast behaviour. BMC Oral Health. 2015;15:171. doi: 10.1186/s12903-015-0154-z
  39. Jensen ED, Pham L, Billington CJ Jr, et al. Bone morphogenic protein 2 directly enhances differentiation of murine osteoclast precursors. J Cell Biochem. 2010;109(4):672–682. doi: 10.1002/jcb.22462
  40. Sahin E, Orhan C, Balci TA, et al. Magnesium picolinate improves bone formation by regulation of RANK/RANKL/OPG and BMP-2/Runx2 signaling pathways in high-fat fed rats. Nutrients. 2021;13(10):3353. doi: 10.3390/nu13103353
  41. Seeherman HJ, Li XJ, Bouxsein ML, Wozney JM. rhBMP-2 induces transient bone resorption followed by bone formation in a nonhuman primate core-defect model. J Bone Joint Surg Am. 2010;92(2):411–426. doi: 10.2106/JBJS.H.01732
  42. Benglis D, Wang MY, Levi AD. A comprehensive review of the safety profile of bone morphogenetic protein in spine surgery. Neurosurgery. 2008;62(5 Suppl 2):ONS423–431;discussion ONS431. doi: 10.1227/01.neu.0000326030.24220.d8
  43. Drake MT, Clarke BL, Oursler MJ, Khosla S. Inhibitors for osteoporosis: biology, potential clinical utility, and lessons learned. Endocr Rev. 2017;38(4):325–350. doi: 10.1210/er.2015-1114
  44. Lemaire PA, Huang L, Zhuo Y, et al. Chondroitin sulfate promotes activation of cathepsin K. J Biol Chem. 2014;289(31):21562–21572. doi: 10.1074/jbc.M114.559898
  45. Kerschan-Schindl K, Hawa G, Kudlacek S, et al. Serum levels of cathepsin K decrease with age in both women and men. Exp Gerontol. 2005;40(6):532–535. doi: 10.1016/j.exger.2005.04.001
  46. Kaneko H, Arakawa T, Mano H, et al. Direct stimulation of osteoclastic bone resorption by bone morphogenetic protein (BMP)-2 and expression of BMP receptors in mature osteoclasts. Bone. 2000;27(4):479–486. doi: 10.1016/s8756-3282(00)00358-6
  47. Yasuda H. Discovery of the RANKL/RANK/OPG system. J Bone Miner Metab. 2021;39(1):2–11. doi: 10.1007/s00774-020-01175-1
  48. Stuss M, Rieske P, Cegłowska A, et al. Assessment of OPG/RANK/RANKL gene expression levels in peripheral blood mononuclear cells (PBMC) after treatment with strontium ranelate and ibandronate in patients with postmenopausal osteoporosis. J Clin Endocrinol Metab. 2013;98(5):E1007–E1011. doi: 10.1210/jc.2012-3885
  49. Tobeiha M, Moghadasian MH, Amin N, Jafarnejad S. RANKL/RANK/OPG pathway: a mechanism involved in exercise-induced bone remodeling. Biomed Res Int. 2020;2020:6910312. doi: 10.1155/2020/6910312
  50. Robling AG, Bonewald LF. The osteocyte: new insights. Annu Rev Physiol. 2020;82:485–506. doi: 10.1146/annurev-physiol-021119-034332
  51. Kužma M, Jackuliak P, Killinger Z, Payer J. Parathyroid hormone-related changes of bone structure. Physiol Res. 2021;70(Suppl 1):S3–S11. doi: 10.33549/physiolres.934779
  52. Compston JE. Skeletal actions of intermittent parathyroid hormone: effects on bone remodelling and structure. Bone. 2007;40(6):1447–1452. doi: 10.1016/j.bone.2006.09.008
  53. Chen T, Wang Y, Hao Z, et al. Parathyroid hormone and its related peptides in bone metabolism. Biochem Pharmacol. 2021;192:114669. doi: 10.1016/j.bcp.2021.114669
  54. Henssler L, Kerschbaum M, Mukashevich MZ, et al. Molecular enhancement of fracture healing — Is there a role for Bone Morphogenetic Protein-2, parathyroid hormone, statins, or sclerostin-antibodies? Injury. 2021;52 Suppl 2:S49–S57. doi: 10.1016/j.injury.2021.04.068
  55. Issack PS, Lauerman MH, Helfet DL, et al. Alendronate inhibits PTH (1-34)-induced bone morphogenetic protein expression in MC3T3-E1 preosteoblastic cells. HSS J. 2007;3(2):169–172. doi: 10.1007/s11420-007-9042-7
  56. Jiang D, Franceschi RT, Boules H, Xiao G. Parathyroid hormone induction of the osteocalcin gene. Requirement for an osteoblast-specific element 1 sequence in the promoter and involvement of multiple-signaling pathways. J Biol Chem. 2004;279(7):5329–5337. doi: 10.1074/jbc.M311547200
  57. Williams AL, Gornet MF, Burkus JK. CT evaluation of lumbar interbody fusion: current concepts. AJNR Am J Neuroradiol. 2005;26(8):2057–2066.
  58. Smoljanović T, Grgurević L, Jelić M, et al. Regeneration of the skeleton by recombinant human bone morphogenetic proteins. Coll Antropol. 2007;31(3):923–932.
  59. Feng JT, Yang XG, Wang F, et al. Efficacy and safety of bone substitutes in lumbar spinal fusion: a systematic review and network meta-analysis of randomized controlled trials. Eur Spine J. 2020;29(6):1261–1276. doi: 10.1007/s00586-019-06257-x
  60. Fu R, Selph S, McDonagh M, et al. Effectiveness and harms of recombinant human bone morphogenetic protein-2 in spine fusion: a systematic review and meta-analysis. Ann Intern Med. 2013;158(12):890–902. doi: 10.7326/0003-4819-158-12-201306180-00006
  61. Liu S, Wang Y, Liang Z, et al. Comparative clinical effectiveness and safety of bone morphogenetic protein versus autologous iliac crest bone graft in lumbar fusion: a meta-analysis and systematic review. Spine (Phila Pa 1976). 2020;45(12):E729–E741. doi: 10.1097/BRS.0000000000003372

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2022 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 71733 от 08.12.2017.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies