Long term effects of de-escalation antimicrobial strategy in the burn unit

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access


BACKGROUND: De-escalation strategy of antimicrobial therapy demonstrates favorable short-term results: it lowers the mortality and reduces the cost of treatment. The long-term results of applying this strategy in the burn unit had not been studied previously.

AIM: To compare the long-term results of the de-escalation approach to antimicrobial therapy on the microbial spectrum, resistance of the hospital microflora and consumption of antimicrobials in the burn unit.

MATERIALS AND METHODS: The study comprises the data from the burn unit of the Severstal hospital for 2006, 2012 and 2021: statistical data on mortality and the average duration of hospital stay; microbiological data on spectrum and resistance of bacteria to antimicrobials.

RESULTS: The use of the de-escalation strategy of antimicrobial therapy in the burn unit of the Healthcare Institution “Severstal” for 10 years has reduced mortality, length of stay, consumption of antimicrobials. De-escalation strategy has not significantly affect the spectrum of nosocomial microflora but has lowered the resistance of gram-positive microorganisms to antibiotics. There was a decrease in the drug resistance index for the main pathogens of infectious complications as a result of implementing the de-escalation strategy.

CONCLUSIONS: The implementation a de-escalation strategy of antimicrobial therapy requires conducting periodic microbiological monitoring for early correction of starting antimicrobial regimens.

Full Text

Restricted Access

About the authors

Denis S. Medvedev

City Pokrovskaya Hospital

Author for correspondence.
Email: mds80@inbox.ru
ORCID iD: 0000-0002-1862-5418
SPIN-code: 8723-8915
ResearcherId: F-6015-2014
Russian Federation, Saint Petersburg

Natalia V. Bakulina

North-Western State Medical University named after I.I. Mechnikov

Email: natalya.bakulina@szgmu.ru
ORCID iD: 0000-0003-4075-4096
SPIN-code: 9503-8950
Scopus Author ID: 7201739080
ResearcherId: N-7299-2014

MD, Dr. Sci. (Med.), Assistant Professor

Russian Federation, Saint Petersburg


  1. Dyar OJ, Huttner B, Schouten J, et al. What is antimicrobial stewardship? Clin Microbiol Infect. 2017;23(11):793–798. doi: 10.1016/j.cmi.2017.08.026
  2. Timsit JF, Bassetti M, Cremer O, et al. Rationalizing antimicrobial therapy in the ICU: A narrative review. Intensive Care Med. 2019;45(2):172–189. doi: 10.1007/s00134-019-05520-5
  3. Marquet K, Liesenborgs A, Bergs J, et al. Incidence and outcome of inappropriate in-hospital empiric antibiotics for severe infection: A systematic review and meta-analysis. Crit Care. 2015;19(1):63. doi: 10.1186/s13054-015-0795-y
  4. Buckman SA, Turnbull IR, Mazuski JE. Empiric antibiotics for sepsis. Surg Infect (Larchmt). 2018;19(2):147–154. doi: 10.1089/sur.2017.282
  5. Saltoglu N, Surme S, Ezirmik E, et al. The effects of antimicrobial resistance and the compatibility of initial antibiotic treatment on clinical outcomes in patients with diabetic foot infection. Int J Low Extrem Wounds. 2021:153473462110041. doi: 10.1177/15347346211004141
  6. van den Bosch CM, Hulscher ME, Akkermans RP, et al. Appropriate antibiotic use reduces length of hospital stay. J Antimicrob Chemother. 2017;72(3):923–932. doi: 10.1093/jac/dkw469
  7. Zakharova NV, Medvedev DS. Decreasing of fatality rate and lowering of direct costs of treatment for using of de-escalation strategy to antibiotic therapy of infection due to thermal injury. Preventive and Clinical Medicine. 2012;4(45):42–45. (In Russ.)
  8. Zakharova NV, Medvedev DS. Pharmacoeconomics of escalation and de-escalation strategies to antibiotic therapy of infection due to thermal injury. Herald of North-Western State Medical University named after I.I. Mechnikov. 2013;5(1):73–76. (In Russ.)
  9. ATC/DDD index 2022 [Internet]. WHOCC. Available from: http://www.whocc.no/atc_ddd_index. Accessed: 21.09.2022.
  10. Analyze a 2x2 contingency table [Internet]. GraphPad by Dotmatics. Available from: https://www.graphpad.com/quickcalcs/contingency1. Accessed: 21.09.2022.
  11. Becker K, Heilmann C, Peters G. Coagulase-negative staphylococci. Clin Microbiol Rev. 2014;27(4):870–926. doi: 10.1128/cmr.00109-13
  12. Gisselø KL, Rubin IMC, Knudsen MS, et al. Substantial decrease in vancomycin-resistant Enterococcus faecium outbreak duration and number of patients during the Danish covid-19 lockdown: A prospective observational study. Microb Drug Resist. 2022;28(1):73–80. doi: 10.1089/mdr.2021.0040
  13. Kampmeier S, Tönnies H, Correa-Martinez CL, et al. A nosocomial cluster of vancomycin resistant enterococci among COVID-19 patients in an Intensive Care Unit. Antimicrob Resist Infect Control. 2020;9(1):154. doi: 10.1186/s13756-020-00820-8
  14. Clinical breakpoints — breakpoints and guidance, 2022 [Internet]. EUCAST. Available from: https://www.eucast.org/clinical_breakpoints. Accessed: 21.09.2022.

Supplementary files

Supplementary Files
1. Fig. 1. The microorganisms isolated from the wound discharge of patients in the Burn unit in 2021

Download (139KB)
2. Fig. 2. Microbiological spectrum of the Burn unit patients. NGNB — nonfermentative gram-negative bacteria

Download (97KB)
3. Fig. 3. Antimicrobial resistance of Staphylococcus spp.

Download (74KB)
4. Fig. 4. Antimicrobial resistance of Enterococcus spp.

Download (64KB)
5. Fig. 5. Antimicrobial resistance of Enterobacterales. IPP — inhibitor-protected penicillins

Download (88KB)
6. Fig. 6. Antimicrobial resistance of nonfermentative gram-negative bacteria

Download (97KB)

Copyright (c) 2023 Eco-Vector

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 71733 от 08.12.2017.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies