Therapeutic potential of the stromal vascular fraction in COVID-19

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access


The new coronavirus infection (COVID-19) is already known to cause serious respiratory illnesses such as pneumonia and lung failure. COVID-19 has caused catastrophic damage to the public health, economic and social stability. As COVID-19 has resulted in enormous human toll and serious economic loss that poses a global threat, urgent understanding of the current situation and the development of strategies to mitigate the spread of the virus is required. Today, many studies are being carried out around the world to study the pathogenesis of COVID-19, where the development of a “cytokine storm” or pulmonary fibrosis is a serious complication that can lead to unfavorable outcomes. This leads to the fact that a deeper understanding of the nature of the virus will allow to develop new approaches in pathogenetic therapy. In this regard, the stromal vascular fraction has tremendous therapeutic potential in COVID-19. Stromal vascular fraction provides anti-inflammatory and immunomodulatory effects and promotes the restoration and regeneration of damaged tissues. The availability, the ability to obtain a significant volume of viable cells of the stromal vascular fraction population, such as adipose tissue stem / stromal cells, as well as their use by the intravenous route, has proven safe and effective in other forms of lung disease, including fibrotic diseases. In other words, the goal of this therapy for COVID-19 is to eliminate the inflammatory process, restore trophic and regenerate damaged tissues, and remodel fibrous and connective tissue. However, stromal vascular fraction is not currently approved for the prevention or treatment of COVID-19 cases. However, clinical trials are ongoing to ensure maximum understanding in terms of efficacy and safety. In this paper, we will discuss this new approach to the use of stromal vascular fraction therapy, which serves as a “ray of hope” in the fight against severe forms of COVID-19

Full Text

Restricted Access

About the authors

Valentin N. Pavlov

Bashkir State Medical University

ORCID iD: 0000-0003-2125-4897
SPIN-code: 2799-6268

MD, Dr. Sci. (Med.), Professor, Corresponding Member of the RAS

Russian Federation, 3 Lenin Str., Ufa, 450008, Republic of Bashkortostan

Albert A. Kazikhinurov

Bashkir State Medical University

ORCID iD: 0000-0001-9284-7855
SPIN-code: 1841-6587

MD, Dr. Sci. (Med.), Professor

Russian Federation, 3 Lenin Str., Ufa, 450008, Republic of Bashkortostan

Rustem A. Kazikhinurov

Bashkir State Medical University

ORCID iD: 0000-0001-6813-8549
SPIN-code: 1196-4134

MD, Cand. Sci. (Med.), Assistant Professor

Russian Federation, 3 Lenin Str., Ufa, 450008, Republic of Bashkortostan

Murad A. Agaverdiyev

Bashkir State Medical University

ORCID iD: 0000-0002-7991-0319
SPIN-code: 5954-3750

MD, PhD student

Russian Federation, 3 Lenin Str., Ufa, 450008, Republic of Bashkortostan

Ilgiz F. Gareev

Bashkir State Medical University

Author for correspondence.
ORCID iD: 0000-0002-4965-0835
SPIN-code: 3839-0621

PhD, Senior Research Associate

Russian Federation, 3 Lenin Str., Ufa, 450008, Republic of Bashkortostan

Ozal A. Beylerli

Bashkir State Medical University

ORCID iD: 0000-0002-6149-5460
SPIN-code: 7392-3152

Research Associate

Russian Federation, 3 Lenin Str., Ufa, 450008, Republic of Bashkortostan

Bakhodur Z. Mazorov

Bashkir State Medical University

ORCID iD: 0000-0002-6873-0291
SPIN-code: 1764-1691
Russian Federation, 3 Lenin Str., Ufa, 450008, Republic of Bashkortostan


  1. Shi H, Yang G, Gao C, et al. Management of neurosurgical patients during the COVID-19 pandemic. Creative Surgery and Oncology. 2020;10(3):177–182. (In Russ.) doi: 10.24060/2076-30932020-10-3-177-182
  2. Izmailov A, Beylerli O, Pavlov V, et al. Management strategy for cancer patients in the context of the COVID-19 epidemic. Semin Oncol. 2020;47(5):312–314. doi: 10.1053/j.seminoncol.2020.07.004
  3. Pavlov V, Beylerli O, Gareev I, Solis LFT. COVID-19-related intracerebral hemorrhage. Front Aging Neurosci. 2020;12:600172. doi: 10.3389/fnagi.2020.600172
  4. Chen Y, Klein SL, Garibaldi BT, et al. Aging in COVID-19: Vulnerability, immunity and intervention. Ageing Res Rev. 2021;65:101205. doi: 10.1016/j.arr.2020.101205
  5. Umakanthan S, Sahu P, Ranade AV, et al. Origin, transmission, diagnosis and management of coronavirus disease 2019 (COVID-19). Postgrad Med J. 2020;96(1142):753–758. doi: 10.1136/postgradmedj-2020-138234
  6. Baptista LS. Adipose stromal/stem cells in regenerative medicine: Potentials and limitations. World J Stem Cells. 2020;12(1):1–7. doi: 10.4252/wjsc.v12.i1.1
  7. Daher SR, Johnstone BH, Phinney DG, March KL. Adipose stromal/stem cells: basic and translational advances: the IFATS collection. Stem Cells. 2008;26(10):2664–2665. doi: 10.1634/stemcells.2008-0927
  8. Sheykhhasan M, Wong JKL, Seifalian AM. Human adipose-derived stem cells with great therapeutic potential. Curr Stem Cell Res Ther. 2019;14(7):532–548. doi: 10.2174/1574888X14666190411121528
  9. Si Z, Wang X, Sun C, et al. Adipose-derived stem cells: Sources, potency, and implications for regenerative therapies. Biomed Pharmacother. 2019;114:108765. doi: 10.1016/j.biopha.2019.108765
  10. Al-Ghadban S, Bunnell BA. Adipose tissue-derived stem cells: Immunomodulatory effects and therapeutic potential. Physiology (Bethesda). 2020;35(2):125–133. doi: 10.1152/physiol.00021.2019
  11. Li J, Curley JL, Floyd ZE, et al. Isolation of human adipose-derived stem cells from lipoaspirates. Methods Mol Biol. 2018;1773:155–165. doi: 10.1007/978-1-4939-7799-4_13
  12. Baer PC. Adipose-derived mesenchymal stromal/stem cells: An update on their phenotype in vivo and in vitro. World J Stem Cells. 2014;6(3):256–265. doi: 10.4252/wjsc.v6.i3.256
  13. Van Dongen JA, Harmsen MC, Stevens HP. Isolation of stromal vascular fraction by fractionation of adipose tissue. Methods Mol Biol. 2019;1993:91–103. doi: 10.1007/978-1-4939-9473-1_8
  14. Li Z, Mu D, Liu C, et al. The cell yields and biological characteristics of stromal/stem cells from lipoaspirate with different digestion loading ratio. Cytotechnology. 2020;72(2):203–215. doi: 10.1007/s10616-020-00369-9
  15. Nürnberger S, Lindner C, Maier J, et al. Adipose-tissue-derived therapeutic cells in their natural environment as an autologous cell therapy strategy: the microtissue-stromal vascular fraction. Eur Cell Mater. 2019;37:113–133. doi: 10.22203/eCM.v037a08
  16. Zanata F, Shaik S, Devireddy RV, et al. Cryopreserved adipose tissue-derived stromal/stem cells: Potential for applications in clinic and therapy. Adv Exp Med Biol. 2016;951:137–146. doi: 10.1007/978-3-319-45457-3_11
  17. Davis TA, Anam K, Lazdun Y, et al. Adipose-derived stromal cells promote allograft tolerance induction. Stem Cells Transl Med. 2014;3(12):1444–1450. doi: 10.5966/sctm.2014-0131
  18. Peñuelas O, Melo E, Sánchez C, et al. Antioxidant effect of human adult adipose-derived stromal stem cells in alveolar epithelial cells undergoing stretch. Respir Physiol Neurobiol. 2013;188(1):1–8. doi: 10.1016/j.resp.2013.04.007
  19. Solodeev I, Orgil M, Bordeynik-Cohen M, et al. Cryopreservation of stromal vascular fraction cells reduces their counts but not their stem cell potency. Plast Reconstr Surg Glob Open. 2019;7(7):e2321. doi: 10.1097/GOX.0000000000002321
  20. Li X, Zeng X, Xu Y, et al. Mechanisms and rejuvenation strategies for aged hematopoietic stem cells. J Hematol Oncol. 2020;13(1):31. doi: 10.1186/s13045-020-00864-8
  21. Bora P, Majumdar AS. Adipose tissue-derived stromal vascular fraction in regenerative medicine: a brief review on biology and translation. Stem Cell Res Ther. 2017;8(1):145. doi: 10.1186/s13287-017-0598-y
  22. Bowles AC, Wise RM, Gerstein BY, et al. Adipose stromal vascular fraction attenuates T(H)1 cell-mediated pathology in a model of multiple sclerosis. J Neuroinflammation. 2018;15(1):77. doi: 10.1186/s12974-018-1099-3
  23. Ahmed TA, Shousha WG, Abdo SM, et al. Human adipose-derived pericytes: biological characterization and reprogramming into induced pluripotent stem cells. Cell Physiol Biochem. 2020;54(2):271–286. doi: 10.33594/000000219
  24. Ramakrishnan VM, Boyd NL. The adipose stromal vascular fraction as a complex cellular source for tissue engineering applications. Tissue Eng Part B Rev. 2018;24(4):289–299. doi: 10.1089/ten.TEB.2017.0061
  25. Nyberg E, Farris A, O’Sullivan A, et al. Comparison of stromal vascular fraction and passaged adipose-derived stromal/stem cells as point-of-care Agents for bone regeneration. Tissue Eng Part A. 2019;25(21–22):1459–1469. doi: 10.1089/ten.TEA.2018.0341
  26. Pavón A, Beloqui I, Salcedo JM, Martin AG. Cryobanking mesenchymal stem cells. Methods Mol Biol. 2017;1590:191–196. doi: 10.1007/978-1-4939-6921-0_14
  27. Aronowitz JA, Lockhart RA, Hakakian CS. A Method for isolation of stromal vascular fraction cells in a clinically relevant time frame. Methods Mol Biol. 2018;1773:11–19. doi: 10.1007/978-1-4939-7799-4_2
  28. Wong DE, Banyard DA, Santos PJF, et al. Adipose-derived stem cell extracellular vesicles: A systematic review. J Plast Reconstr Aesthet Surg. 2019;72(7):1207–1218. doi: 10.1016/j.bjps.2019.03.008
  29. Sun Y, Chen S, Zhang X, Pei M. Significance of cellular cross-talk in stromal vascular fraction of adipose tissue in neovascularization. Arterioscler Thromb Vasc Biol. 2019;39(6):1034–1044. doi: 10.1161/ATVBAHA.119.312425
  30. Zhang Y, Cai J, Zhou T, et al. Improved long-term volume retention of stromal vascular fraction gel grafting with enhanced angiogenesis and adipogenesis. Plast Reconstr Surg. 2018;141(5):676e–686e. doi: 10.1097/PRS.0000000000004312
  31. Semon JA, Zhang X, Pandey AC, et al. Administration of murine stromal vascular fraction ameliorates chronic experimental autoimmune encephalomyelitis. Stem Cells Transl Med. 2013;2(10):789–796. doi: 10.5966/sctm.2013-0032
  32. Premaratne GU, Ma LP, Fujita M, et al. Stromal vascular fraction transplantation as an alternative therapy for ischemic heart failure: anti-inflammatory role. J Cardiothorac Surg. 2011;6:43. doi: 10.1186/1749-8090-6-43
  33. Blaber SP, Webster RA, Hill CJ, et al. Analysis of in vitro secretion profiles from adipose-derived cell populations. J Transl Med. 2012;10:172. doi: 10.1186/1479-5876-10-172
  34. Jayaramayya K, Mahalaxmi I, Subramaniam MD, et al. Immunomodulatory effect of mesenchymal stem cells and mesenchymal stem-cell-derived exosomes for COVID-19 treatment. BMB Rep. 2020;53(8):400–412. doi: 10.5483/BMBRep.2020.53.8.121
  35. Ryan PM, Caplice NM. Is adipose tissue a reservoir for viral spread, immune activation and cytokine amplification in COVID-19? Obesity (Silver Spring). 2020;28(7):1191–1194. doi: 10.1002/oby.22843
  36. Yu S, Cheng Y, Zhang L, et al. Treatment with adipose tissue-derived mesenchymal stem cells exerts anti-diabetic effects, improves long-term complications, and attenuates inflammation in type 2 diabetic rats. Stem Cell Res Ther. 2019;10(1):333. doi: 10.1186/s13287-019-1474-8
  37. Jiang M, Bi X, Duan X, et al. Adipose tissue-derived stem cells modulate immune function in vivo and promote long-term hematopoiesis in vitro using the aGVHD model. Exp Ther Med. 2020;19(3):1725–1732. doi: 10.3892/etm.2020.8430
  38. Engela AU, Hoogduijn MJ, Boer K, et al. Human adipose-tissue derived mesenchymal stem cells induce functional de-novo regulatory T cells with methylated FOXP3 gene DNA. Clin Exp Immunol. 2013;173(2):343–354. doi: 10.1111/cei.12120
  39. Hajmousa G, Harmsen MC. Assessment of energy metabolic changes in adipose tissue-derived stem cells. Methods Mol Biol. 2017;1553:55–65. doi: 10.1007/978-1-4939-6756-8_5
  40. Fukui E, Funaki S, Kimura K, et al. Adipose tissue-derived stem cells have the ability to differentiate into alveolar epithelial cells and ameliorate lung injury caused by elastase-induced emphysema in mice. Stem Cells Int. 2019;2019:5179172. doi: 10.1155/2019/5179172
  41. Cho HH, Kim YJ, Kim JT, et al. The role of chemokines in proangiogenic action induced by human adipose tissue-derived mesenchymal stem cells in the murine model of hindlimb ischemia. Cell Physiol Biochem. 2009;24(5-6):511–518. doi: 10.1159/000257495
  42. Shetty AK. Mesenchymal stem cell infusion shows promise for combating coronavirus (COVID-19)-induced pneumonia. Aging Dis. 2020;11(2):462–464. doi: 10.14336/AD.2020.0301
  43. Gentile P, Sterodimas A. Adipose stem cells (ASCs) and stromal vascular fraction (SVF) as a potential therapy in combating (COVID-19)-disease. Aging Dis. 2020;11(3):465–469. doi: 10.14336/AD.2020.0422
  44. Bradley KC, Finsterbusch K, Schnepf D, et al. Microbiota-driven tonic interferon signals in lung stromal cells protect from influenza virus infection. Cell Rep. 2019;28(1):245–256.e4. doi: 10.1016/j.celrep.2019.05.105
  45. Hoogduijn MJ, Lombardo E. Mesenchymal stromal cells anno 2019: Dawn of the therapeutic era? Concise review. Stem Cells Transl Med. 2019;8(11):1126–1134. doi: 10.1002/sctm.19-0073
  46. Lopes-Pacheco M, Robba C, Rocco PRM, Pelosi P. Current understanding of the therapeutic benefits of mesenchymal stem cells in acute respiratory distress syndrome. Cell Biol Toxicol. 2020;36(1):83–102. doi: 10.1007/s10565-019-09493-5
  47. Atkins JW, West K, Kasow KA. Current and future cell therapy standards and guidelines. Hematol Oncol Clin North Am. 2019;33(5):839–855. doi: 10.1016/j.hoc.2019.05.008
  48. Ji F, Li L, Li Z, et al. Mesenchymal stem cells as a potential treatment for critically ill patients with coronavirus disease 2019. Stem Cells Transl Med. 2020;9(7):813–814. doi: 10.1002/sctm.20-0083
  49. Rossnagl S, Ghura H, Groth C, et al. A subpopulation of stromal cells controls cancer cell homing to the bone marrow. Cancer Res. 2018;78(1):129–142. doi: 10.1158/0008-5472.CAN-16-3507
  50. Fang Y, Zhang Y, Zhou J, Cao K. Adipose-derived mesenchymal stem cell exosomes: a novel pathway for tissues repair. Cell Tissue Bank. 2019;20(2):153–161. doi: 10.1007/s10561-019-09761-y
  51. Kubrova E, D’Souza RS, Hunt CL, et al. Injectable biologics: What is the evidence? Am J Phys Med Rehabil. 2020;99(10):950–960. doi: 10.1097/PHM.0000000000001407
  52. Khalaj K, Figueira RL, Antounians L, et al. Systematic review of extracellular vesicle-based treatments for lung injury: are EVs a potential therapy for COVID-19? J Extracell Vesicles. 2020;9(1):1795365. doi: 10.1080/20013078.2020.1795365
  53. Putra A, Rosdiana I, Darlan DM, et al. Intravenous administration is the best route of mesenchymal stem cells migration in improving liver function enzyme of acute liver failure. Folia Med (Plovdiv). 2020;62(1):52–58. doi: 10.3897/folmed..e47712
  54. Martinez J, Zoretic S, Moreira A, Moreira A. Safety and efficacy of cell therapies in pediatric heart disease: a systematic review and meta-analysis. Stem Cell Res Ther. 2020;11(1):272. doi: 10.1186/s13287-020-01764-x
  55. West WH, Beutler AI, Gordon CR. Regenerative injectable therapies: Current evidence. Curr Sports Med Rep. 2020;19(9):353–359. doi: 10.1249/JSR.0000000000000751
  56. Zimmerlin L, Rubin JP, Pfeifer ME, et al. Human adipose stromal vascular cell delivery in a fibrin spray. Cytotherapy. 2013;15(1):102–108. doi: 10.1016/j.jcyt.2012.10.009
  57. Di Liddo R, Bertalot T, Borean A, et al. Leucocyte and Platelet-rich Fibrin: a carrier of autologous multipotent cells for regenerative medicine. J Cell Mol Med. 2018;22(3):1840–1854. doi: 10.1111/jcmm.13468

Supplementary files

Supplementary Files
1. Fig. 1. Potential action mechanisms of the stromal vascular fraction in COVID-19. Stromal vascular fraction demonstrates three mechanisms of action (anti-fibrotic, pro-angiogenic and anti-inflammatory activity) that can be involved in the treatment of COVID-19 through the synthesis of various molecules. MMP-1,2,9 — matrix metalloproteinases-1,2,9; TGF-β1 — transforming growth factor beta 1; TIMP1 — tissue inhibitor of metalloproteinases-1; TGFβR2 — transforming growth factor beta receptor II; HGF — hepatocyte growth factor; miR — microRNA; COL1A1 — the gene encoding the α1 chain of type I collagen; COL3A1 — the gene encoding the α3-chain of type I collagen; VEGF — vascular endothelial growth factor; IL-6, 10, 4 — interleukin-6, 10, 4; PDGF — platelet growth factor; IGF-1 — insulin-like growth factor 1; TNF-R1 — tumor necrosis factor receptor 1; IL1-RA — interleukin 1 receptor antagonist; PGE2 — prostaglandin E2; IFNγ — interferon gamma; TNFα — tumor necrosis factor alpha

Download (162KB)
2. Fig. 2. Modulation of the “cytokine storm” by stromal vascular fraction and adipose tissue stem / stromal cells (ADSCs). Possibility of eliminating the “cytokine storm” with the help of transfusion / homing of stromal vascular fraction and adipose tissue stem / stromal cells due to COVID-19. IL-1, 6, 10 — interleukin-1, 6, 10; IFNγ — interferon gamma; TNFα — tumor necrosis factor alpha; ROS — reactive oxygen species

Download (254KB)

Copyright (c) 2021 Pavlov V.N., Kazikhinurov A.A., Kazikhinurov R.A., Agaverdiyev M.A., Gareev I.F., Beylerli O.A., Mazorov B.Z.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 71733 от 08.12.2017.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies