Disorders of lipid metabolism in the liver in patients with chronic viral hepatitis

Cover Page

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The review article is devoted to the problem of lipid metabolism disorders in the liver in patients with chronic hepatitis B and chronic hepatitis C. The results of modern biological, epidemiological and clinical studies aimed at studying the causes and mechanisms of the formation of liver steatosis and steatohepatitis, their prevalence and influence on the course of infectious pathology are presented. Particular attention is paid to the generalization and systematization of the currently available data on the mechanisms of lipid metabolism disorders in the liver, mediated by the molecular structures of hepatitis B and C viruses. In conclusion, the need for timely diagnosis and treatment of pathological conditions caused by the development of lipid metabolism disorders in the liver is substantiated in order to increase the quality of medical care for patients with chronic hepatitis B and C.

Full Text

Restricted Access

About the authors

Valeriy V. Tsvetkov

Smorodintsev Research Institute of Influenza

Author for correspondence.
Email: suppcolor@gmail.com
ORCID iD: 0000-0001-5195-9316
SPIN-code: 6562-9851

MD, Cand. Sci. (Med.)

Russian Federation, 15/17 Professor Popova str., Saint-Petersburg, 197376

Ivan I. Tokin

Smorodintsev Research Institute of Influenza;North-Western State Medical University named after I.I. Mechnikov, Saint Petersburg, Russia

Email: ivan.tokin@influenza.spb.ru
ORCID iD: 0000-0002-9824-3945
SPIN-code: 2496-9920

MD, Cand. Sci. (Med.)

Russian Federation, 15/17 Professor Popova str., Saint-Petersburg, 197376; 41 Kirochnaya str., Saint Petersburg, 191015

Olesya E. Nikitina

Smorodintsev Research Institute of Influenza

Email: olesya.nikitina@influenza.spb.ru
ORCID iD: 0000-0001-5506-9919
SPIN-code: 2478-0403

MD, Cand. Sci. (Med.)

Russian Federation, 15/17 Professor Popova str., Saint-Petersburg, 197376

Dmitry A. Lioznov

Smorodintsev Research Institute of Influenza; Pavlov First Saint Petersburg State Medical University

Email: dlioznov@yandex.ru
ORCID iD: 0000-0003-3643-7354
SPIN-code: 3321-6532

MD, Dr. Sci. (Med.)

Russian Federation, 15/17 Professor Popova str., Saint-Petersburg, 197376; Saint-Petersburg

References

  1. Kawano Y, Cohen DE. Mechanisms of hepatic triglyceride accumulation in non-alcoholic fatty liver disease. J Gastroenterol. 2013;48(4):434–441. doi: 10.1007/s00535-013-0758-5
  2. Marchesini G, Brizi M, Morselli-Labate A, et al. Association of nonalcoholic fatty liver disease with insulin resistance. Am J Med. 1999;107(5):450–455. doi: 10.1016/s0002-9343(99)00271-5
  3. Marchesini G, Brizi M, Bianchi G, et al. Nonalcoholic fatty liver disease: a feature of the metabolic syndrome. Diabetes. 2001;50(8):1844–1850. doi: 10.2337/diabetes.50.8.1844
  4. Horton JD, Goldstein JL, Brown MS. SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J Clin Invest. 2002;109(9):1125–1131. doi: 10.1172/jci0215593
  5. Wang Y, Viscarra J, Kim SJ, Sul HS. Transcriptional regulation of hepatic lipogenesis. Nat Rev Mol Cell Biol. 2015;16(11):678–689. doi: 10.1038/nrm4074
  6. Walther TC, Farese JrRV. Lipid droplets and cellular lipid metabolism. Annu Rev Biochem. 2012;81:687–714. doi: 10.1146/annurev-biochem-061009-102430
  7. Wilfling F, Wang H, Haas JT, et al. Triacylglycerol synthesis enzymes mediate lipid droplet growth by relocalizing from the ER to lipid droplets. Dev Cell. 2013;24(4):384–399. doi: 10.1016/j.devcel.2013.01.013
  8. Xu L, Zhou L, Li P. CIDE proteins and lipid metabolism. Arterioscler Thromb Vasc Biol. 2012;32(5):1094–1098. doi: 10.1161/ATVBAHA.111.241489
  9. Thiam AR, Farese RVJr, Walther TC. The biophysics and cell biology of lipid droplets. Nat Rev Mol Cell Biol. 2013;14(12):775–786. doi: 10.1038/nrm3699
  10. Kory N, Thiam AR, Farese RVJr, Walther TC. Protein crowding is a determinant of lipid droplet protein composition. Dev Cell. 2015;34(3):351–363. doi: 10.1016/j.devcel.2015.06.007
  11. Wu JW, Wang SP, Alvarez F, et al. Deficiency of liver adipose triglyceride lipase in mice causes progressive hepatic steatosis. Hepatology. 2011;54(1):122–132. doi: 10.1002/hep.24338
  12. Singh R, Cuervo AM. Lipophagy: connecting autophagy and lipid metabolism. Int J Cell Biol. 2012;2012:282041. doi: 10.1155/2012/282041
  13. Tiwari S, Siddiqi SA. Intracellular trafficking and secretion of VLDL. Arterioscler Thromb Vasc Biol. 2012;32(5):1079–1086. doi: 10.1161/ATVBAHA.111.241471
  14. Ye J, Li JZ, Liu Y, et al. Cideb, an ER and lipid droplet-associated protein, mediates VLDL lipidation and maturation by interacting with apolipoprotein B. Cell Metab. 2009;9(2):177–190. doi: 10.1016/j.cmet.2008.12.013
  15. Razi B, Alizadeh S, Omidkhoda A, et al. Association of chronic hepatitis B infection with metabolic syndrome and its components: meta-analysis of observational studies. Diabetes Metab Syndr. 2017;11 Suppl 2:S939–S947. doi: 10.1016/j.dsx.2017.07.020
  16. Jinjuvadia R, Liangpunsakul S. Association between metabolic syndrome and its individual components with viral hepatitis B. Am J Med Sci. 2014;347(1):23–27. doi: 10.1097/MAJ.0b013e31828b25a5
  17. Chen JY, Wang JH, Lin CY, et al. Lower prevalence of hypercholesterolemia and hyperglyceridemia found in subjects with seropositivity for both hepatitis B and C strains independently. J Gastroenterol Hepatol. 2010;25(11):1763–1768. doi: 10.1111/j.1440-1746.2010.06300.x
  18. Liu PT, Hwang AC, Chen JD. Combined effects of hepatitis B virus infection and elevated alanine aminotransferase levels on dyslipidemia. Metabolism. 2013;62(2):220–225. doi: 10.1016/j.metabol.2012.07.022
  19. Chiang CH, Lai JS, Hung SH, et al. Serum adiponectin levels are associated with hepatitis B viral load in overweight to obese hepatitis B virus carriers. Obesity (Silver Spring). 2013;21(2):291–296. doi: 10.1002/oby.20000
  20. Wong VW, Wong GL, Chu WC, et al. Hepatitis B virus infection and fatty liver in the general population. J Hepatol. 2012;56(3):533–540. doi: 10.1016/j.jhep.2011.09.013
  21. Machado MV, Oliveira AG, Cortez-Pinto H. Hepatic steatosis in hepatitis B virus infected patients: meta-analysis of risk factors and comparison with hepatitis C infected patients. J Gastroenterol Hepatol. 2011;26(9):1361–1367. doi: 10.1111/j.1440-1746.2011.06801.x
  22. Li H, Zhu W, Zhang L, et al. The metabolic responses to hepatitis B virus infection shed new light on pathogenesis and targets for treatment. Sci Rep. 2015;5:8421. doi: 10.1038/srep08421
  23. Xu Z, Zhai L, Yi T, et al. Hepatitis B virus X induces inflammation and cancer in mice liver through dysregulation of cytoskeletal remodeling and lipid metabolism. Oncotarget. 2016;7(43):70559–70574. doi: 10.18632/oncotarget.12372
  24. Wu Y, Peng X, Zhu Y, et al. Hepatitis B virus X protein induces hepatic steatosis by enhancing the expression of liver fatty acid binding protein. J Virol. 2015;90(4):1729–1740. doi: 10.1128/JVI.02604-15
  25. Kim K, Kim KH, Kim HH, Cheong J. Hepatitis B virus X protein induces lipogenic transcription factor SREBP1 and fatty acid synthase through the activation of nuclear receptor LXRα. Biochem J. 2008;416(2):219–230. doi: 10.1042/BJ20081336
  26. Kang SK, Chung TW, Lee JY, et al. The hepatitis B virus X protein inhibits secretion of apolipoprtein B by enhancing the expression of N-acetylglucosaminyltransferase III. J Biol Chem. 2004;279(27):28106–28112. doi: 10.1074/jbc.M403176200
  27. Cheng YL, Wang YJ, Kao WY, et al. Inverse association between hepatitis B virus infection and fatty liver disease: a largescale study in populations seeking for checkup. PloS One. 2013;8(8):e72049. doi: 10.1371/journal.pone.0072049
  28. Ghalamkari S, Sharafi H, Alavian SM. Association of PNPLA3 rs738409 polymorphism with liver steatosis but not with cirrhosis in patients with HBV infection: Systematic review with metaanalysis. J Gene Med. 2018;20(1):e3001. doi: 10.1002/jgm.3001
  29. Kuo YH, Kee KM, Wang JH, et al. Association between chronic viral hepatitis and metabolic syndrome in southern Taiwan: a large populationbased study. Aliment Pharmacol Ther. 2018;48(9):993–1002. doi: 10.1111/apt.14960
  30. Banks DE, Bogler Y, Bhuket T, et al. Significant disparities in risks of diabetes mellitus and metabolic syndrome among chronic hepatitis C virus patients in the US. Diabetes Metab Syndr. 2017;11 Suppl 1:S153–S158. doi: 10.1016/j.dsx.2016.12.025
  31. Arain SQ, Talpur FN, Channa NA. A comparative study of serum lipid contents in pre and post IFN-alpha treated acute hepatitis C patients. Lipids Health Dis. 2015;14:117. doi: 10.1186/s12944-015-0119-x
  32. Adinolfi LE, Gambardella M, Andreana A, et al. Steatosis accelerates the progression of liver damage of chronic hepatitis C patients and correlates with specific HCV genotype and visceral obesity. Hepatology. 2001;33(6):1358–1364. doi: 10.1053/jhep.2001.24432
  33. Negro F. Steatosis and insulin resistance in response to treatment of chronic hepatitis C. J Viral Hepat. 2012;19 Suppl 1:42–47. doi: 10.1111/j.1365-2893.2011.01523.x
  34. Hofmann S, Krajewski M, Scherer C, et al. Complex lipid metabolic remodeling is required for efficient hepatitis C virus replication. Biochim Biophys Acta Mol Cell Biol Lipids. 2018;1863(9):1041–1056. doi: 10.1016/j.bbalip.2018.06.002
  35. Chang ML. Metabolic alterations and hepatitis C: From bench to bedside. World J Gastroenterol. 2016;22(4):1461–1467. doi: 10.3748/wjg.v22.i4.1461
  36. Miyoshi H, Moriya K, Tsutsumi T, et al. Pathogenesis of lipid metabolism disorder in hepatitis C: polyunsaturated fatty acids counteract lipid alterations induced by the core protein. J Hepatol. 2011;54(3):432–438. doi: 10.1016/j.jhep.2010.07.039
  37. Blanchet M, Sureau C, Guévin C, et al. SKI-1/S1P inhibitor PF-429242 impairs the onset of HCV infection. Antiviral Res. 2015;115:94–104. doi: 10.1016/j.antiviral.2014.12.017
  38. Harris C, Herker E, Farese RVJr, Ott M. Hepatitis C virus core protein decreases lipid droplet turnover: a mechanism for core-induced steatosis. J Biol Chem. 2011;286(49):42615–42625. doi: 10.1074/jbc.M111.285148
  39. Sato S, Fukasawa M, Yamakawa Y, et al. Proteomic profiling of lipid droplet proteins in hepatoma cell lines expressing hepatitis C virus core protein. J Biochem. 2006;139(5):921–930. doi: 10.1093/jb/mvj104
  40. Ferguson D, Zhang J, Davis MA, et al. The lipid droplet-associated protein perilipin 3 facilitates hepatitis C virus driven hepatic steatosis. J Lipid Res. 2017;58(2):420–432. doi: 10.1194/jlr.M073734
  41. Meng Z, Liu Q, Sun F, Qiao L. Hepatitis C virus nonstructural protein 5A perturbs lipid metabolism by modulating AMPK/SREBP-1c signaling. Lipids Health Dis. 2019;18(1):191. doi: 10.1186/s12944-019-1136-y
  42. Camus G, Schweiger M, Herker E, et al. The hepatitis C virus core protein inhibits adipose triglyceride lipase (ATGL)-mediated lipid mobilization and enhances the ATGL interaction with comparative gene identification 58 (CGI-58) and lipid droplets. J Biol Chem. 2014;289(52):35770–35780. doi: 10.1074/jbc.M114.587816
  43. Abenavoli L, Masarone M, Peta V, et al. Insulin resistance and liver steatosis in chronic hepatitis C infection genotype 3. World J Gastroenterol. 2014;20(41):15233–15240. doi: 10.3748/wjg.v20.i41.15233
  44. Shi ST, Polyak SJ, Tu H, et al. Hepatitis C virus NS5A colocalizes with the core protein on lipid droplets and interacts with apolipoproteins. Virology. 2002;292(2):198–210. doi: 10.1006/viro.2001.1225
  45. Benga WJ, Krieger SE, Dimitrova M, et al. Apolipoprotein E interacts with hepatitis C virus nonstructural protein 5A and determines assembly of infectious particles. Hepatology. 2010;51(1):43–53. doi: 10.1002/hep.23278
  46. Gong Y, Cun W. The Role of ApoE in HCV Infection and Comorbidity. Int J Mol Sci. 2019;20(8):2037. doi: 10.3390/ijms20082037
  47. Adinolfi LE, Restivo L, Zampino R, et al. Metabolic alterations and chronic hepatitis C: treatment strategies. Expert Opin Pharmacother. 2011;12(14):2215–2234. doi: 10.1517/14656566.2011.597742
  48. Huang CM, Chang KC, Hung CH, et al. Impact of PNPLA3 and IFNL3 polymorphisms on hepatic steatosis in Asian patients with chronic hepatitis C. PloS One. 2017;12(8):e0182204. doi: 10.1371/journal.pone.0182204
  49. Magri MC, Manchiero C, Prata TVG, et al. The influence of gene chronic hepatitis C virus infection on hepatic fibrosis and steatosis. Diagn Microbiol Infect Dis. 2020;97(2):115025. doi: 10.1016/j.diagmicrobio.2020.115025
  50. Liu Z, Que S, Zhou L, et al. The effect of the TM6SF2 E167K variant on liver steatosis and fibrosis in patients with chronic hepatitis C: a meta-analysis. Sci Rep. 2017;7(1):9273. doi: 10.1038/s41598-017-09548-9
  51. Yoon H, Lee JG, Yoo JH, et al. Effects of metabolic syndrome on fibrosis in chronic viral hepatitis. Gut Liver. 2013;7(14):469–474. doi: 10.5009/gnl.2013.7.4.469
  52. Leandro G, Mangia A, Hui J, et al. Relationship between steatosis, inflammation, and fibrosis in chronic hepatitis C: a meta-analysis of individual patient data. Gastroenterology. 2006;130(6):1636–1642. doi: 10.1053/j.gastro.2006.03.014
  53. Westbrook RH, Dusheiko G. Natural history of hepatitis C. J Hepatol. 2014;61(1 Suppl):S58–S68. doi: 10.1016/j.jhep.2014.07.012
  54. Stevenson HL, Utay NS. Hepatic steatosis in HCV-infected persons in the direct-acting antiviral era. Trop Dis Travel Med Vaccines. 2016;2:21. doi: 10.1186/s40794-016-0038-5

Supplementary files

Supplementary Files
Action
1. Figure. Lipid metabolism in the hepatocyte: LD — lipid droplets; VLDL — very low density lipoproteins; ATGL / PNPLA-2 — patatin-like phospholipase domain-containing protein 2; ChREBP — carbohydrate response element binding protein; CIDE — cell death-inducing DNA fragmentation factor alpha-like effector; DGAT-2 — diacylglycerol O-acyltransferase 2; GPAT-4 — glycerol-3-phosphate acyltransferase 4; SREBP-1 — sterol regulatory element binding protein 1

Download (336KB)

Statistics

Views

Abstract: 130

PDF (Russian): 4

Dimensions

Article Metrics

Metrics Loading ...

PlumX

Refbacks

  • There are currently no refbacks.

Copyright (c) 2021 Tsvetkov V.V., Tokin I.I., Nikitina O.E., Lioznov D.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies