GENETIC POLYMORPHISM OF HAEMOSTASIS



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Platelets activation and aggregation play an important role in the pathogenesis of atherothrombotic disease and its most important complications such as coronary artery disease and myocardial infarction. In clinical practice it is well-known that, in spite of the documented presence of advanced atherothrombotic disease, only a subset of patients develops acute myocardial infarction during their life-course. The reasons for individual differences in susceptibility to MI are poorly understood. Subjects with hypercoagulability and an increased tendency to form blood clots may be at increased risk. However, this is difficult to assess in clinical practice, since we lack a unique and reliable laboratory marker of hypercoagulability. Moreover, functional tests evaluating concentration and function of blood coagulation proteins are often subjected to multiple transient interferences, e.g. due to the use of antithrombotic and anticoagulant agents or the presence of concomitant inflammation. Genetic polymorphisms with a documented functional effect on blood coagulation proteins may represent a useful diagnostic and prognostic tool. During the last decade the study of polymorphisms as a risk factor for coronary artery disease and myocardial infarction were given largely convincing results. It demonstrated that gene polymorphisms of hemostasis and especially their combined effects are a risk factor for coronary heart disease and its major thrombotic complication - myocardial infarction. Hemostasis as a complex phenomenon modulated by the interaction of multiple genetic factors that do not have predominant action. Polygenic approach as a tool to identify subject at increased risk of developing complications suggests that the simultaneous presence of multiple genetic variations with a weak but significant effect on the process of hemostasis can affect the risk of serious thrombotic complications and that the number of prothrombotic alleles correlates with the risk of myocardial infarction in patients with advanced atherothrombotic disease.

Full Text

Restricted Access

About the authors

S G Sherbak

St. Peterburg State University; Aleksandrovskii city hospital №40, St. Petersburg

T A Kamiliva

Military Medical Academy named after S.M. Kirov

D G Lisovetch

Aleksandrovskii city hospital №40, St. Petersburg

A M Sarana

St. Peterburg State University; Aleksandrovskii city hospital №40, St. Petersburg

E A Jurina

North-Western State Medical University named after I.I. Mechnikov

A K Jurkin

Military Medical Academy named after S.M. Kirov

S V Makarenko

St. Peterburg State University; Aleksandrovskii city hospital №40, St. Petersburg

N A Klenkova

Aleksandrovskii city hospital №40, St. Petersburg

A J Anisenkova

Aleksandrovskii city hospital №40, St. Petersburg

A A Saharovskaia

Aleksandrovskii city hospital №40, St. Petersburg

O S Glotov

St. Peterburg State University; Aleksandrovskii city hospital №40, St. Petersburg

A S Glotov

St. Peterburg State University; Aleksandrovskii city hospital №40, St. Petersburg

A G Maximov

Military Medical Academy named after S.M. Kirov

References

  1. Lloyd-Jones D. et al., American Heart Association. Heart disease and stroke statistics-2009 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee // Circulation. - 2009. - Vol. 119, №3. - e21-181.
  2. Parpugga T.K. et al. The effect of PAI-1 4G/5G polymorphism and clinical factors on coronary artery occlusion in myocardial infarction // Dis. markers. [Электронный ресурс] - 2015. - Режим доступа: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4529953//, свободный. - Загл. с экрана. - Текст на экране англ.].
  3. Ye Z. et al. Seven haemostatic gene polymorphisms in coronary disease: meta-analysis of 66,155 cases and 91,307 controls // Lancet. - 2006. - Vol. 367, №9511. - Р. 651-658.
  4. Martinelli N. et al. Combined effect of hemostatic gene polymorphisms and the risk of myocardial infarction in patients with advanced coronary atherosclerosis // PLoS one. - 2008. - Vol. 3, №2. - e1523.
  5. Kathiresan S. et al. Common genetic variation in five thrombosis genes and relations to plasma hemostatic protein level and cardiovascular disease risk // Arterioscler. thromb. vasc. biol. - 2006. - Vol. 26, №6. - Р. 1405-1412.
  6. Danesh J. et al. Plasma fibrinogen level and the risk of major cardiovascular diseases and nonvascular mortality: an individual participant meta-analysis // JAMA. - 2005. - Vol. 294, №14. - Р. 1799-809.
  7. Mannila M.N. et al. Contribution of haplotypes across the fibrinogen gene cluster to variation in risk of myocardial infarction // Thromb. haemost. - 2005. - Vol. 93, №3. - Р. 570-577.
  8. Theodoraki E.V. et al. Fibrinogen beta variants confer protection against coronary artery disease in a Greek case-control study // BMC med genet. [Электронный ресурс] - 2010. - Режим доступа: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2834581/, свободный. - Загл. с экрана. - Текст на экране англ.].
  9. Martiskainen M. et al. Βeta-fibrinogen gene promoter A -455 allele associated with poor longterm survival among 55-71 years old Caucasian women in Finnish stroke cohort // BMC neurol. [Электронный ресурс] - 2014. - Режим доступа: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4131463/, свободный. - Загл. с экрана. - Текст на экране англ.].
  10. Ken-Dror G. et al. Haplotype and genotype effects of the F7 gene on circulating factor VII, coagulation activation markers and incident coronary heart disease in UK men // J. thromb. haemost. - 2010. - Vol. 8, №11. - Р. 2394-2403.
  11. Friso S. et al. Promoter methylation in coagulation F7 gene influences plasma FVII concentrations and relates to coronary artery disease // J. med. genet. - 2012. - Vol. 49, №3. - Р. 192-199.
  12. Ladenvall P. et al. Tissue-type plasminogen activator -7351C/T enhancer polymorphism is associated with a first myocardial infarction // Thromb. haemost. - 2002. - Vol. 87, №1. - Р. 105-109.
  13. Huang J. et al. Genome-wide association study for circulating tissue plasminogen activator (tPA) levels and functional follow-up implicates endothelial STXBP5 and STX2 // Arterioscler. thromb. vasc. biol. - 2014. - Vol. 34, №5. - Р. 1093-1101.
  14. Onalan O. et al. Plasminogen activator inhibitor-1 4G4G genotype is associated with myocardial infarction but not with stable coronary artery disease // J. thromb. thrombolysis. - 2008. - Vol. 26, №3. - Р. 211-217.
  15. Agirbasli M. et al. Multifactor dimensionality reduction analysis of MTHFR, PAI-1, ACE, PON1, and eNOS gene polymorphisms in patients with early onset coronary artery disease // Eur. j. cardiovasc. prev. rehabil. 2011. - Vol. 18, №6. - Р. 803-809.
  16. Lima L.M. et al. PAI-1 4G/5G polymorphism and plasma levels association in patients with coronary artery disease // Arq. bras. cardiol. - 2011. - Vol. 97, №6. - Р. 462-389.
  17. Ploplis V. A. Effects of altered plasminogen activator inhibitor-1 expression on cardiovascular disease // Current drug targets. - 2011. - Vol. 12, №12. - Р. 1782-1789.
  18. Bladbjerg EM, et al. Genetic influence on thrombotic risk markers in the elderly-a Danish twin study // J. Thromb. haemost. - 2006. - Vol. 4, №3. - Р. 599-607.
  19. Mannucci P.M. et al. The association of factor V Leiden with myocardial infarction is replicated in 1880 patients with premature disease // J. thromb. haem. - 2010. - Vol. 8, №10. - Р. 2116-2121.
  20. Zdravkovic S. et al. Heritability of death from coronary heart disease: a 36-year follow-up of 20 966 Swedish twins // J. intern. med. - 2002. - Vol. 252, №3. - Р. 247-254.
  21. Myocardial Infarction Genetics Consortium. Genome-wide association of early-onset myocardial infarction with single nucleotide polymorphisms and copy number variants // Nat. genet. - 2009. - Vol. 41, №3. - Р. 334-341.
  22. Desch K.C. et al. Linkage analysis identifies a locus for plasma von Willebrand factor undetected by genome-wide association // Proc. natl. acad. sci. USA. - 2013. - Vol. 110, №2. - Р 588-593.
  23. Van Schie M. et al. Genetic determinants of von Willebrand factor levels and activity in relation to the risk of cardiovascular disease: a review // J. thromb. haemost. -2011. - Vol. 9, №5. - Р. 899-908.
  24. Van der Meer I.M. et al. Genetic variability of von Willebrand factor and risk of coronary heart disease: the Rotterdam Study // Br. j. haematol. - 2004. - Vol. 124, №3. - Р. 343-347.
  25. Della-Morte D. et al. Association between variations in coagulation system genes and carotid plaque // J. neurol. sci. - 2012. - Vol. 323, №1-2. - Р. 93-98.
  26. Van Schie M.C. et al. Variation in the von Willebrand factor gene is associated with von Willebrand factor levels and with the risk for cardiovascular disease // Blood. 2011. - Vol. 117, №4. - Р. 1393-1399.
  27. Smith N.L. et al. Novel associations of multiple genetic loci with plasma levels of factor VII, factor VIII, and von Willebrand factor: The CHARGE (Cohorts for Heart and Aging Research in Genome Epidemiology) Consortium // Circulation. - 2010. -Vol. 121, №12. - Р. 1382-1392.
  28. Tang W. et al. Gene-centric approach identifies new and known loci for FVIII activity and VWF antigen levels in European Americans and African Americans // Am. j. hematol. - 2015. - Vol. 90, №6. - Р. 534-540.
  29. Spiel A.O. et al. von Willebrand factor in cardiovascular disease: focus on acute coronary syndromes // Circulation. - 2008. - Vol. 117, №11. - Р. 1449-1459.
  30. Bongers T.N et al. Lower levels of ADAMTS13 are associated with cardiovascular disease in young patients // Atherosclerosis. - 2009. - Vol. 207, №1. - Р. 250-254.
  31. Schettert I.T. et al. Association between ADAMTS13 polymorphisms and risk of cardiovascular events in chronic coronary disease // Thromb. res. - 2010. - Vol. 125, №1. - Р. 61-66.
  32. Kucharska-Newton A.M. et al. Association of the platelet GPIIb/IIIa polymorphism with atherosclerotic plaquemorphology: the Atherosclerosis Risk in Communities (ARIC) Study // Atherosclerosis. - 2011. - Vol. 216, №1. - Р. 151-156.
  33. Rivera-García B.E. et al. Platelet glycoprotein IIIA PLA1/A2 polymorphism in young patients with ST elevation myocardial infarction and idiopathic ischemic stroke // Mol. cell. biochem. - 2013. - Vol. 384, Issue 1. - P. 163-171.
  34. Boekholdt S.M. et al. Interaction between a genetic variant of the platelet fibrinogen receptor and fibrinogen levels in determining the risk of cardiovascular events // Am. heart. j. - 2004. - Vol. 147, №1. - P. 181-186.
  35. Aikawa M, Libby P. The vulnerable atherosclerotic plaque: pathogenesis and therapeutic approach // Cardiovasc. pathol. - 2004. - Vol. 13, №3. - Р. 125-138.
  36. Zeymer U, Wienbergen H. A review of clinical trials with eptifibatide in cardiology // Cardiovascular. drug reviews. - 2007. - Vol. 25, №4. - Р. 301-315.
  37. Fontana P. et al. P2Y12 H2 haplotype is associated with peripheral arterial disease. A case-control study // Circulation. - 2003. - Vol. 108, №24. - Р. 2971-2973.
  38. Cavallari U. et al. Gene sequence variations of the platelet P2Y12 receptor are associated with coronary artery disease // BMC med genet. [Электронный ресурс] - 2007. - Режим доступа: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2048504/, свободный. - Загл. с экрана. - Текст на экране англ.].
  39. Eitzman D.T. et al. Homozygosity for factor V Leiden leads to enhanced thrombosis and atherosclerosis in mice // Circulation. - 2005. - Vol. 111, №14. - Р. 1822-1825.
  40. Mosley J.D. et al. Mechanistic phenotypes: an aggregative phenotyping strategy to identify disease mechanisms using GWAS Data // PLoS one. - 2013. - Vol. 8, №12. - e81503.
  41. Satra M. et al. Sequence variations in the FII, FV, F13A1, FGB and PAI-1 genes are associated with differences in myocardial perfusion // Pharmacogenomics. - 2011. - Vol. 12, №2. - Р. 195-203.
  42. Ken-Dror G. et al. A genetic instrument for Mendelian randomization of fibrinogen // Eur. j. epidemiol. - 2012. - Vol. 27, №4. - Р. 267-279.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2015 Sherbak S.G., Kamiliva T.A., Lisovetch D.G., Sarana A.M., Jurina E.A., Jurkin A.K., Makarenko S.V., Klenkova N.A., Anisenkova A.J., Saharovskaia A.A., Glotov O.S., Glotov A.S., Maximov A.G.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 71733 от 08.12.2017.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies