Functional changes in the spine as predictors of comorbidities in patients with ankylosing spondylitis

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

BACKGROUND: Advanced ankylosing spondylitis can be characterized by the formation of disabling spinal deformities. However, the effect of cervicothoracic kyphosis on the cardiovascular system is poorly understood. In routine rheumatology practice, the occiput-to-wall distance is used as a reliable method to confirm the presence of kyphosis in patients.

AIM: To assess the association between kyphosis (measured by occiput-to-wall distance, the occiput-to-wall distance) and the development of comorbidities in patients with late-stage ankylosing spondylitis.

METHODS: The study included men with advanced-stage ankylosing spondylitis. As part of the standard assessment of the primary disease, clinical and laboratory examinations were performed, including additional measurement of myostatin levels. Cardiovascular status was also evaluated using echocardiography and ultrasound examination of the brachiocephalic arteries.

RESULTS: Forty men (33 to 67 years old) with advanced ankylosing spondylitis participated in the study. All patients were divided into 2 groups: 1) with the occiput-to-wall distance < 10 cm (n = 45%), 2) with the occiput-to-wall distance ≥ 10 cm (n = 55%). The analysis of cardiovascular system status showed that all patients in the occiput-to-wall distance ≥ 10 cm group had hypertension (100% vs 66.7%, p = 0.005) with predominance of grade 2 arterial hypertension (45.5% vs 27.8%, p = 0.010) in contrast to the occiput-to-wall distance ≥ 10 cm group. Echocardiography revealed statistically significant reductions in left ventricular function values in the occiput-to-wall distance ≥ 10 cm group compared to the occiput-to-wall distance < 10 cm group. Notably, the occiput-to-wall distance ≥ 10 cm group was more frequently overweight (86.23 ± 14.03 vs. 74.83 ± 14.44, p = 0.016) with a predominance of class I–II obesity (45.5% vs. 11.1%, p < 0.001). Also in our patients we found a correlation between serum myostatin level and the occiput-to-wall distance (r = 0.404, p = 0.01), ASDAS (Axial Spondyloarthritis Disease Activity Score; r = 0.405, p = 0.009) and BASFI (Bath Ankylosing Spondylitis Functional Index; r = 0.344, p = 0.03).

CONCLUSION: The occiput-to-wall distance increase should be considered as a predictor of the development of cardiovascular pathology, which is confirmed by echo-CG, and other comorbidities. Patients with progressive cervicothoracic kyphosis are characterised by lower values of left ventricular ejection fraction, which may be due to adaptation mechanisms caused by spinal axis displacement. In the future, myostatin measurements should be considered as a complementary method for assessing the function of the cardiovascular system and skeletal muscles.

Full Text

Restricted Access

About the authors

Elena V. Zonova

Novosibirsk State Medical University; City Clinical Polyclinic No. 1, City Center for Clinical Immunology

Author for correspondence.
Email: elena_zonova@list.ru
ORCID iD: 0000-0001-8529-4105
SPIN-code: 4898-4276

MD, Dr. Sci. (Medicine), Professor

Russian Federation, 52 Krasny Ave., Novosibirsk, 630091; Novosibirsk

Elena S. Yushina

Novosibirsk State Medical University; City Clinical Polyclinic No. 1, City Center for Clinical Immunology

Email: elena.s@yuschina.ru
ORCID iD: 0000-0001-7781-3593
SPIN-code: 6055-8782

MD

Russian Federation, Novosibirsk; Novosibirsk

Elena B. Luksha

Novosibirsk State Medical University; City Clinical Hospital No. 1

Email: lukshal@yandex.ru
ORCID iD: 0009-0007-1196-1148

MD, Cand. Sci. (Medicine)

Russian Federation, Novosibirsk; Novosibirsk

Viktor V. Rerikh

Novosibirsk State Medical University; Novosibirsk Research Institute of Traumatology and Orthopedics named after Y.L. Tsivyan

Email: rvv_nsk@mail.ru
ORCID iD: 0000-0001-8545-0024
SPIN-code: 1223-8142

MD, Dr. Sci. (Medicine), Professor

Russian Federation, Novosibirsk; Novosibirsk

References

  1. Rudwaleit M. New approaches to diagnosis and classification of axial and peripheral spondyloarthritis. Curr Opin Rheumatol. 2010;22(4):375–380. doi: 10.1097/BOR.0b013e32833ac5cc
  2. Association of Rheumatologists of Russia. Ankylosing spondylitis. Clinical recommendations. 2018. Available from: https://library.mededtech.ru/rest/documents/cr_175/. Accessed: 02 Dec 2024. (In Russ.)
  3. Braun J, Sieper J. Ankylosing spondylitis. Lancet. 2007;369(9570):1379–1390. doi: 10.1016/S0140-6736(07)60635-7
  4. Shin JK, Lee JS, Goh TS, Son SM. Correlation between clinical outcome and spinopelvic parameters in ankylosing spondylitis. Eur Spine J. 2014;23(1):242–247. doi: 10.1007/s00586-013-2929-8
  5. Jenkinson TR, Mallorie PA, Whitelock HC, et al. Defining spinal mobility in ankylosing spondylitis (AS). The Bath AS Metrology Index. J Rheumatol. 1994;21(9):1694–1698.
  6. Jones SD, Porter J, Garrett SL, et al. A new scoring system for the Bath Ankylosing Spondylitis Metrology Index (BASMI). J Rheumatol. 1995;22(8):1609.
  7. Wiyanad A, Chokphukiao P, Suwannarat P, et al. Is the occiput-wall distance valid and reliable to determine the presence of thoracic hyperkyphosis? Musculoskelet Sci Pract. 2018;38:63–68. doi: 10.1016/J.MSKSP.2018.09.010
  8. Yang Y, Huang L, Zhao G, et al. Influence of kyphosis in ankylosing spondylitis on cardiopulmonary functions. Medicine. 2023;102(43):E35592. doi: 10.1097/MD.0000000000035592
  9. Szabo SM, Levy AR, Rao SR, et al. Increased risk of cardiovascular and cerebrovascular diseases in individuals with ankylosing spondylitis: A population-based study. Arthritis Rheum. 2011;63(11):3294–3304. doi: 10.1002/art.30581
  10. Haroon NN, Paterson JM, Li P, et al. Patients with ankylosing spondylitis have increased cardiovascular and cerebrovascular mortality: a population-based study. Ann Intern Med. 2015;163(6):409–416. doi: 10.7326/M14-2470
  11. Kim JH, Choi IA. Cardiovascular morbidity and mortality in patients with spondyloarthritis: a meta-analysis. Int J Rheum Dis. 2021;24(4):477–486. doi: 10.1111/1756-185X.13970
  12. Sari I, Okan T, Akar S, et al. Impaired endothelial function in patients with ankylosing spondylitis. Rheumatology (Oxford). 2006;45(3):283–286. doi: 10.1093/RHEUMATOLOGY/KEI145
  13. Divecha H, Sattar N, Rumley A, et al. Cardiovascular risk parameters in men with ankylosing spondylitis in comparison with non-inflammatory control subjects: relevance of systemic inflammation. Clin Sci (Lond). 2005;109(2):171–176. doi: 10.1042/CS20040326
  14. Kjeken I, Dagfinrud H, Slatkowsky-Christensen B, et al. Activity limitations and participation restrictions in women with hand osteoarthritis: Patients’ descriptions and associations between dimensions of functioning. Ann Rheum Dis. 2005;64(11):1633–1638. doi: 10.1136/ard.2004.034900
  15. Maas F, Arends S, van der Veer E, et al. Obesity is common in axial spondyloarthritis and is associated with poor clinical outcome. J Rheumatol. 2016;43(2):383–387. doi: 10.3899/JRHEUM.150648
  16. McPherron AC, Lawler AM, Lee SJ. Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature. 1997;387(6628):83–90. doi: 10.1038/387083A0
  17. Sharma M, Kambadur R, Matthews KG, et al. Myostatin, a transforming growth factor-beta superfamily member, is expressed in heart muscle and is upregulated in cardiomyocytes after infarct. J Cell Physiol. 1999;180(1):1–9. doi: 10.1002/(SICI)1097-4652(199907)180:1<1::AID-JCP1>3.0.CO;2-V
  18. Lee JH, Jun HS. Role of myokines in regulating skeletal muscle mass and function. Front Physiol. 2019;10:42. doi: 10.3389/FPHYS.2019.00042
  19. Kerschan-Schindl K, Ebenbichler G, Föeger-Samwald U, et al. Rheumatoid arthritis in remission: Decreased myostatin and increased serum levels of periostin. Wien Klin Wochenschr. 2019;131(1–2):1–7. doi: 10.1007/S00508-018-1386-0/TABLES/3
  20. Knapp M, Supruniuk E, Górski J. Myostatin and the heart. Biomolecules. 2023;13(12):1777. doi: 10.3390/BIOM13121777
  21. Gaidukova IZ, Rebrov AP, Lapshina SA, et al. Use of nonsteroidal anti-inflammatory drugs and biological agents for the treatment of axial spondyloarthritides. Recommendations of the spondyloarthritis study group of experts, All-Russian public organization “The association of rheumatology of Russia”. Rheumatology Science and Practice. 2017;55(5):474–484. doi: 10.14412/1995-4484-2017-474-484
  22. Baigent C, Bhala N, Emberson J, et al. Vascular and upper gastrointestinal effects of non-steroidal anti-inflammatory drugs: meta-analyses of individual participant data from randomised trials. Lancet. 2013;382(9894):769–779. doi: 10.1016/S0140-6736(13)60900-9
  23. Bakland G, Gran JT, Nossent JC. Increased mortality in ankylosing spondylitis is related to disease activity. Ann Rheum Dis. 2011;70(11):1921–1925. doi: 10.1136/ARD.2011.151191
  24. Fu J, Wu M, Liang Y, et al. Differences in cardiovascular manifestations between ankylosing spondylitis patients with and without kyphosis. Clin Rheumatol. 2016;35(8):2003–2008. doi: 10.1007/S10067-016-3324-8
  25. Piepoli MF, Hoes AW, Agewall S, et al. 2016 European Guidelines on cardiovascular disease prevention in clinical practice: The Sixth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of 10 societies and by invited experts) Developed with the special contribution of the EACPR. Eur Heart J. 2016;37(29):2315–2381. doi: 10.1093/eurheartj/ehw106
  26. Vosse D, van der Heijde D, Landewé R, et al. Determinants of hyperkyphosis in patients with ankylosing spondylitis. Ann Rheum Dis. 2006;65(6):770–774. doi: 10.1136/ARD.2005.044081
  27. Heuft-Dorenbosch L, Vosse D, Landewé R, et al. Measurement of spinal mobility in ankylosing spondylitis: comparison of occiput-to-wall and tragus-to-wall distance. J Rheumatol. 2004;31(9):1779–1784.
  28. Calvo-Gutiérrez J, Garrido-Castro JL, González-Navas C, et al. Inter-rater reliability of clinical mobility measures in ankylosing spondylitis. BMC Musculoskelet Disord. 2016;17(1):382. doi: 10.1186/S12891-016-1242-1
  29. Poddubnyy D, Haibel H, Listing J, et al. Baseline radiographic damage, elevated acute-phase reactant levels, and cigarette smoking status predict spinal radiographic progression in early axial spondylarthritis. Arthritis Rheum. 2012;64(5):1388–1398. doi: 10.1002/ART.33465
  30. Baraliakos X, Listing J, von der Recke A, Braun J. The natural course of radiographic progression in ankylosing spondylitis — evidence for major individual variations in a large proportion of patients. J Rheumatol. 2009;36(5):997–1002. doi: 10.3899/JRHEUM.080871
  31. Baraliakos X, Listing J, von der Recke A, Braun J. The natural course of radiographic progression in ankylosing spondylitis: differences between genders and appearance of characteristic radiographic features. Curr Rheumatol Rep. 2011;13(5):383–387. doi: 10.1007/S11926-011-0192-8
  32. Ramiro S, Stolwijk C, van Tubergen A, et al. Evolution of radiographic damage in ankylosing spondylitis: a 12 year prospective follow-up of the OASIS study. Ann Rheum Dis. 2015;74(1):52–59. doi: 10.1136/ANNRHEUMDIS-2013-204055
  33. van Tubergen A, Ramiro S, van Der Heijde D, et al. Development of new syndesmophytes and bridges in ankylosing spondylitis and their predictors: a longitudinal study. Ann Rheum Dis. 2012;71(4):518–523. doi: 10.1136/ANNRHEUMDIS-2011-200411
  34. Murillo-Saich JD, Vazquez-Villegas ML, Ramirez-Villafaña M, et al. Association of myostatin, a cytokine released by muscle, with inflammation in rheumatoid arthritis: A cross-sectional study. Medicine. 2021;100(3):E24186. doi: 10.1097/MD.0000000000024186
  35. Ladehesa-Pineda ML, Arias de la Rosa I, López Medina C, et al. Assessment of the relationship between estimated cardiovascular risk and structural damage in patients with axial spondyloarthritis. Ther Adv Musculoskelet Dis. 2020;12:1759720X20982837. doi: 10.1177/1759720X20982837
  36. Agca R, Heslinga SC, Rollefstad S, et al. EULAR recommendations for cardiovascular disease risk management in patients with rheumatoid arthritis and other forms of inflammatory joint disorders: 2015/2016 update. Ann Rheum Dis. 2017;76(1):17–28. doi: 10.1136/ANNRHEUMDIS-2016-209775
  37. The results of the ESC Congress. European clinical guidelines, what’s new? Russian Journal of Cardiology. 2021;26(3S):9–14. EDN: EYLZAV doi: 10.15829/1560-4071-2021-4684
  38. Kesikburun B, Ekşioğlu E, Çakcı A. Metabolic syndrome in rheumatoid arthritis and ankylosing spondylitis. Ankara Med J. 2018;(2):198–206. doi: 10.17098/amj.435258
  39. Liew JW, Gianfrancesco MA, Heckbert SR, Gensler LS. Relationship between body mass index, disease activity, and exercise in ankylosing spondylitis. Arthritis Care Res (Hoboken). 2022;74(8):1287–1293. doi: 10.1002/ACR.24565
  40. Bayartai ME, Luomajoki H, Tringali G, et al. Differences in spinal posture and mobility between adults with obesity and normal weight individuals. Sci Rep. 2023;13(1):13409. doi: 10.1038/S41598-023-40470-5
  41. Liew JW, Reveille JD, Castillo M, et al. Cardiovascular risk scores in axial spondyloarthritis versus the general population: a cross-sectional study. J Rheumatol. 2021;48(3):361. doi: 10.3899/JRHEUM.200188
  42. Moltó A, Etcheto A, Van Der Heijde D, et al. Prevalence of comorbidities and evaluation of their screening in spondyloarthritis: results of the international cross-sectional ASAS-COMOSPA study. Ann Rheum Dis. 2016;75(6):1016–1023. doi: 10.1136/ANNRHEUMDIS-2015-208174
  43. Zhang J, Qi J, Li Y, et al. Association between type 1 diabetes mellitus and ankylosing spondylitis: a two-sample Mendelian randomization study. Front Immunol. 2023;14:1289104. doi: 10.3389/FIMMU.2023.1289104/BIBTEX
  44. American Diabetes Association Professional Practice Committee. 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes – 2022. Diabetes Care. 2022;45(Suppl 1):S17–S38. doi: 10.2337/DC22-S002
  45. O’Leary DH, Polak JF, Kronmal RA, et al. Carotid-artery intima and media thickness as a risk factor for myocardial infarction and stroke in older adults. Cardiovascular Health Study Collaborative Research Group. N Engl J Med. 1999;340(1):14–22. doi: 10.1056/NEJM199901073400103
  46. Yuan Y, Yang J, Zhang X, et al. Carotid intima-media thickness in patients with ankylosing spondylitis: a systematic review and updated meta-analysis. J Atheroscler Thromb. 2019;26(3):260–271. doi: 10.5551/JAT.45294
  47. McGonagle D, Stockwin L, Isaacs J, Emery P. An enthesitis based model for the pathogenesis of spondyloarthropathy. additive effects of microbial adjuvant and biomechanical factors at disease sites. J Rheumatol. 2001;28(10):2155–2159.
  48. Erdes SF, Korotaeva TV. Progression of axial spondyloarthritis. Modern rheumatology journal. 2021;15(3):7–14. EDN: MBKPRN doi: 10.14412/1996-7012-2021-3-7-14
  49. Rossini M, Viapiana O, Adami S, et al. Focal bone involvement in inflammatory arthritis: the role of IL17. Rheumatol Int. 2016;36(4):469–482. doi: 10.1007/S00296-015-3387-X
  50. Rees JD, Bennett AN, Harris D, Jones T. Superior outcomes for military ankylosing spondylitis patients treated with anti-TNF. BMJ Mil Health. 2014;160(4):310–313. doi: 10.1136/JRAMC-2013-000156
  51. Ramiro S, Landewé R, van Tubergen A, et al. Lifestyle factors may modify the effect of disease activity on radiographic progression in patients with ankylosing spondylitis: a longitudinal analysis. RMD Open. 2015;1(1):e000153. doi: 10.1136/RMDOPEN-2015-000153
  52. Debusschere K, Cambré I, Gracey E, Elewaut D. Born to run: The paradox of biomechanical force in spondyloarthritis from an evolutionary perspective. Best Pract Res Clin Rheumatol. 2017;31(6):887–894. doi: 10.1016/J.BERH.2018.07.011
  53. Perrotta FM, Musto A, Lubrano E. New insights in physical therapy and rehabilitation in axial spondyloarthritis: a review. Rheumatol Ther. 2019;6(4):479–486. doi: 10.1007/S40744-019-00170-X
  54. Ramiro S, Nikiphorou E, Sepriano A, et al. ASAS-EULAR recommendations for the management of axial spondyloarthritis: 2022 update. Ann Rheum Dis. 2022;82(1):19–34. doi: 10.1136/ard-2022-223296

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Distribution of sacroiliitis stages by occiput-to-wall distance, p < 0.026.

Download (54KB)
3. Fig. 2. Analysis of stages of hypertension conditioning on occiput-to-wall distance, p < 0.010.

Download (61KB)

Copyright (c) 2025 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 71733 от 08.12.2017.