Роль миокардиальных мостиков в ремоделировании артерий и развитии атеросклероза

Обложка


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

Миокардиальные мостики представляют собой участки коронарных артерий, частично покрытые мышечными волокнами миокарда. Хотя ранее считали, что миокардиальные мостики встречаются редко, последние исследования показали увеличение их распространенности, что связывают с повышением частоты острых коронарных синдромов, аритмии, инфарктов миокарда и даже внезапной сердечной смерти. Некоторые авторы предполагают, что миокардиальные мостики могут способствовать формированию атеросклеротических бляшек в проксимальной части коронарных артерий. Данные аутопсий также указывают на увеличенное образование атеросклеротических бляшек в местах облитерации артерий, что указывает на общий патогенез атеросклероза в зонах интима–медиа.

В обзоре проанализированы текущие знания о роли миокардиальных мостиков в ремоделировании сосудов и развитии атеросклероза, а также определены направления дальнейших исследований.

Авторы выполнили поиск статей в базах данных PubMed, Google Scholar и eLibrary, используя следующие ключевые слова: «атеросклероз и миокардиальные мостики», «миокардиальные мостики» и «миокардиальные мостики и сердечно-сосудистые заболевания», «патофизиология миокардиальных мостиков», «визуализация сердечно-сосудистой системы», «myocardial bridges», «myocardial bridges and cardiovascular diseases», «myocardial bridges imaging». Включены публикации, вышедшие в период с 1951 по 2024 г.

Механизм обструкции коронарных артерий заключается в сжатии интрамуральной части артерии мышечной тканью во время систолы. Гемодинамические условия, создаваемые миокардиальными мостиками, характеризуются повышением напряжения сдвига стенки (wall shear stress) из-за уменьшения просвета артерии во время систолы, что уменьшает риск формирования атеросклеротических бляшек внутри самого моста. Однако проксимальнее миокардиальных мостиков напряжение сдвига стенки снижается, что способствует образованию атеросклеротических бляшек.

Миокардиальные мостики могут изменять толщину интимы и размер просвета артерии, а также сегменты, расположенные проксимальнее и дистальнее них. Длина, расположение и толщина миокардиальных мостиков прямо влияют на степень обструкции и гипертрофию интимы. Ремоделирование сосудов под воздействием механических сил играет ключевую роль в поддержании сосудистой функции, а его нарушение может привести к развитию сердечно-сосудистых заболеваний.

Полный текст

Доступ закрыт

Об авторах

Артем Арсенович Шахарьянц

Ставропольский государственный медицинский университет

Автор, ответственный за переписку.
Email: saharancartem@gmail.com
ORCID iD: 0009-0008-7371-7121
Россия, 355017, Ставрополь, ул. Мира, д. 310

Зарина Низамиевна Гюлева

Дагестанский государственный медицинский университет

Email: zarinaguleva@gmail.com
ORCID iD: 0009-0008-7486-2566
Россия, Махачкала

Бай-Али Мансурович Муртазов

Кабардино-Балкарский Государственный университет им. Х.М. Бербекова

Email: bajalimurtazov@gmail.com
ORCID iD: 0009-0009-0054-4343
Россия, Нальчик

Аминат Салавдиевна Тухигова

Чеченский государственный университет им. А.А. Кадырова

Email: ami_tkhgva@mail.ru
ORCID iD: 0009-0004-0107-6370
Россия, Грозный

Аминат Сайпудиновна Расуева

Кабардино-Балкарский Государственный университет им. Х.М. Бербекова

Email: abdulla999asd@icloud.com
ORCID iD: 0009-0008-2450-0583
Россия, Нальчик

Иса Сулайманович Курбанов

Кабардино-Балкарский Государственный университет им. Х.М. Бербекова

Email: isa.kurbanov.24@mail.ru
ORCID iD: 0009-0004-6655-5516
Россия, Нальчик

Гапур Зурабович Боков

Кабардино-Балкарский Государственный университет им. Х.М. Бербекова

Email: gapurbokov006@mail.ru
ORCID iD: 0009-0002-5561-8249
Россия, Нальчик

Велена Венеровна Загидуллина

Башкирский государственный медицинский университет

Email: zagvelena01@mail.ru
ORCID iD: 0009-0006-5378-0807
Россия, Уфа

Арина Романовна Кротова

Северо-Западный государственный медицинский университет им. И.И. Мечникова

Email: arina.krotova.95@bk.ru
ORCID iD: 0009-0007-4301-6167
Россия, Санкт-Петербург

Екатерина Викторовна Литвинова

Саратовский государственный медицинский университет им. В.И. Разумовского

Email: yekaterina.litvinova.2003@mail.ru
ORCID iD: 0009-0008-5304-824X
Россия, Саратов

Сатаней Ахмедовна Сижажева

Саратовский государственный медицинский университет им. В.И. Разумовского

Email: sizhazhevas@internet.ru
ORCID iD: 0009-0002-8909-2978
Россия, Саратов

Хутмат Хасановна Мусаева

Лыткаринская больница

Email: khutmatm@gmail.com
ORCID iD: 0009-0008-7531-289X
Россия, Лыткарино

Ильнара Ильнуровна Гарипова

Ижевская государственная медицинская академия

Email: igaripova62@gmail.com
ORCID iD: 0009-0007-1586-8231
Россия, Ижевск

Анастасия Александровна Джабарова

Северо-Западный государственный медицинский университет им. И.И. Мечникова

Email: anasdzhabarova@mail.ru
ORCID iD: 0009-0002-7493-8280
Россия, Санкт-Петербург

Список литературы

  1. Zhao DH, Fan Q, Ning JX, et al. Myocardial bridge-related coronary heart disease: Independent influencing factors and their predicting value. World J Clin Cases. 2019;7(15):1986–1995. doi: 10.12998/wjcc.v7.i15.1986
  2. Mirzoev NT, Shulenin KS, Kutelev GG, Cherkashin DV. The current state of the problem of myocardial bridges. Translyatsionnaya meditsina. 2022;9(5):20–32. EDN: OKHTIT doi: 10.18705/2311-4495-2022-9-5-20-32
  3. Javadzadegan A, Moshfegh A, Mohammadi M, et al. Haemodynamic impacts of myocardial bridge length: A congenital heart disease. Comput Methods Programs Biomed. 2019;175:25–33. doi: 10.1016/j.cmpb.2019.03.017
  4. Jiang L, Zhang M, Zhang H, et al. A potential protective element of myocardial bridge against severe obstructive atherosclerosis in the whole coronary system. BMC Cardiovasc Disord. 2018;18(1):105. doi: 10.1186/s12872-018-0847-8
  5. Pugsley MK, Tabrizchi R. The vascular system. An overview of structure and function. J Pharmacol Toxicol Methods. 2000;44(2):333–340. doi: 10.1016/s1056-8719(00)00125-8
  6. Brovin DL, Belyaeva OD, Pchelina SN, et al. Common carotid intima-media thickness, levels of total and high-molecular weight adiponectin in women with abdominal obesity. Kardiologiia. 2018;58(6):29–36. EDN: XPUSJN doi: 10.18087/cardio.2018.6.10122
  7. Lu Y, Wu H, Li J, et al. Passive and active triaxial wall mechanics in a two-layer model of porcine coronary artery. Sci Rep. 2017;7(1):13911. doi: 10.1038/s41598-017-14276-1
  8. Bychkova IY, Roginsky VV, Abduvosidov HA. Development and formation of blood vessels of the head and neck in utero. Russian Journal of Operative Surgery and Clinical Anatomy. 2023;7(1):50–57. EDN: ARPUHY doi: 10.17116/operhirurg2023701150
  9. Aronov DM, Bubnova MG, Drapkina OM. Atherosclerosis pathogenesis from the perspective of microvascular dysfunction. Cardiovascular Therapy and Prevention. 2021;20(7):3076. EDN: HWRODY doi: 10.15829/1728-8800-2021-3076
  10. Conrad C, Newberry D. Understanding the pathophysiology, implications, and treatment options of patent ductus arteriosus in the neonatal population. Adv Neonatal Care. 2019;19(3):179–187. doi: 10.1097/ANC.0000000000000590
  11. Dzialowski EM. Comparative physiology of the ductus arteriosus among vertebrates. Semin Perinatol. 2018;42(4):203–211. doi: 10.1053/j.semperi.2018.05.002
  12. Martin CE, Fisher RD, Page D, Bender HW Jr. Preferential atherosclerosis at the aortic junction of the ligamentum arteriosum: clinical significance and pathological correlation. Ann Thorac Surg. 1976;22(1):66–73. doi: 10.1016/s0003-4975(10)63955-0
  13. Guerri-Guttenberg R, Castilla R, Cao G, et al. Coronary intimal thickening begins in fetuses and progresses in pediatric population and adolescents to atherosclerosis. Angiology. 2020;71(1):62–69. doi: 10.1177/0003319719849784
  14. Jebari-Benslaiman S, Galicia-García U, Larrea-Sebal A, et al. Pathophysiology of Atherosclerosis. Int J Mol Sci. 2022;23(6):3346. doi: 10.3390/ijms23063346
  15. Sergienko IV, Ansheles AA. Pathogenesis, diagnosis and treatment of atherosclerosis: practical aspects. Russian Cardiology Bulletin. 2021;16(1):6472. doi: 10.17116/Cardiobulletin20211601164
  16. El Manaa HE, Shchekochikhin DYu, Shabanova MS, et al. Multislice computed tomography capabilities in assessment of the coronary arteries atherosclerotic lesions. Kardiologiia. 2019;59(2):24–31. EDN: MXYWSN doi: 10.18087/cardio.2019.2.10214
  17. Geiringer E. The mural coronary. Am Heart J. 1951;41(3):359–368. doi: 10.1016/0002-8703(51)90036-1
  18. Roberts W, Charles SM, Ang C, et al. Myocardial bridges: A meta-analysis. Clin Anat. 2021;34(5):685–709. doi: 10.1002/ca.23697
  19. Ismail-zade I K, Grebennik VK, Ivanov IYu, et al. Immediate results of treatment of patients with myocardial bridges of the coronary arteries. Grekov’s Bulletin of Surgery. 2021;180(1):17–24. (In Russ.). doi: 10.24884/0042-4625-2021-180-1-17-24
  20. Martynov AYu, Irkabayeva MM, Malsagova IU, Bayramov S. Left ventricular myocardial infarction in a young patient with a myocardial bridge of the coronary artery. Clinical Medicine (Russian Journal). 2024;102(7):563–569. doi: 10.30629/0023-2149-2024-102-7-563-569
  21. Sternheim D, Power DA, Samtani R, et al. Myocardial bridging: diagnosis, functional assessment, and management: JACC state-of-the-art review. J Am Coll Cardiol. 2021;78(22):2196–2212. doi: 10.1016/j.jacc.2021.09.859
  22. Freiling TP, Dhawan R, Balkhy HH, et al. Myocardial bridge: diagnosis, treatment, and challenges. J Cardiothorac Vasc Anesth. 2022;36(10):3955–3963. doi: 10.1053/j.jvca.2022.06.024
  23. Tarantini G, Barioli A, Nai Fovino L, et al. Unmasking myocardial bridge-related ischemia by intracoronary functional evaluation. Circ Cardiovasc Interv. 2018;11(6):e006247. doi: 10.1161/CIRCINTERVENTIONS.117.006247
  24. Danek BA, Kearney K, Steinberg ZL. Clinically significant myocardial bridging. Heart. 2023;110(2):81–86. doi: 10.1136/heartjnl-2022-321586
  25. Polacek P, Kralove H. Relation of myocardial bridges and loops on the coronary arteries to coronary occulsions. Am Heart J. 1961;61:44–52. doi: 10.1016/0002-8703(61)90515-4
  26. Ishikawa Y, Akasaka Y, Ito K, et al. Significance of anatomical properties of myocardial bridge on atherosclerosis evolution in the left anterior descending coronary artery. Atherosclerosis. 2006;186(2):380–389. doi: 10.1016/j.atherosclerosis.2005.07.024
  27. Corban MT, Hung OY, Eshtehardi P, et al. Myocardial bridging: contemporary understanding of pathophysiology with implications for diagnostic and therapeutic strategies. J Am Coll Cardiol. 2014;63(22):2346–2355. doi: 10.1016/j.jacc.2014.01.049
  28. Chodimella J, Kondety P. Morpho-histological study of myocardial bridges and their association with atherosclerosis. J Evol Med Dent Sci. 2020;9(42):3102–3106. doi: 10.14260/jemds/2020/681
  29. Iuchi A, Ishikawa Y, Akishima-Fukasawa Y, et al. Association of variance in anatomical elements of myocardial bridge with coronary atherosclerosis. Atherosclerosis. 2013;227(1):153–158. doi: 10.1016/j.atherosclerosis.2012.11.036
  30. Santucci A, Jacoangeli F, Cavallini S, et al. The myocardial bridge: incidence, diagnosis, and prognosis of a pathology of uncertain clinical significance. Eur Heart J Suppl. 2022;24(1):61–67. doi: 10.1093/eurheartjsupp/suac075
  31. Kabak SL, Melnichenko YuM, Gordionok DM, et al. Myocardial bridges and obstructive coronary atherosclerosis. Proceedings of the National Academy of Sciences of Belarus, Medical series. 2020;17(1):38–48. EDN: XRREGJ doi: 10.29235/1814-6023-2020-17-1-38-48
  32. Ishii T, Hosoda Y, Osaka T, et al. The significance of myocardial bridge upon atherosclerosis in the left anterior descending coronary artery. J Pathol. 1986;148(4):279–291. doi: 10.1002/path.1711480404
  33. Zhang M, Xu X, Wu Q, et al. Surgical strategies and outcomes for myocardial bridges coexisting with other cardiac conditions. Eur J Med Res. 2023;28(1):488. doi: 10.1186/s40001-023-01478-9
  34. Akturk Y, Kavak RP, Akin N, Hekimoglu OK. Intramyocardial and intra-atrial courses in the right coronary artery: prevalence and characteristics. Int J Cardiovasc Imaging. 2024;40(12):2491–2502. doi: 10.1007/s10554-024-03255-z
  35. Ishii T, Ishikawa Y, Akasaka Y. Myocardial bridge as a structure of “double-edged sword” for the coronary artery. Ann Vasc Dis. 2014;7(2):99–108. doi: 10.3400/avd.ra.14-00037
  36. Akishima-Fukasawa Y, Ishikawa Y, Mikami T, et al. Settlement of stenotic site and enhancement of risk factor load for atherosclerosis in left anterior descending coronary artery by myocardial bridge. Arterioscler Thromb Vasc Biol. 2018;38(6):1407–1414. doi: 10.1161/ATVBAHA.118.310933
  37. Rinaldi R, Princi G, La Vecchia G, et al. MINOCA associated with a myocardial bridge: pathogenesis, diagnosis and treatment. J Clin Med. 2023;12(11):3799. doi: 10.3390/jcm12113799
  38. Masuda T, Ishikawa Y, Akasaka Y, et al. The effect of myocardial bridging of the coronary artery on vasoactive agents and atherosclerosis localization. J Pathol. 2001;193(3):408–414. doi: 10.1002/1096-9896(2000)9999:9999<::AID-PATH792>3.0.CO;2-R
  39. Loukas M, Bhatnagar A, Arumugam S, et al. Histologic and immunohistochemical analysis of the antiatherogenic effects of myocardial bridging in the adult human heart. Cardiovasc Pathol. 2014;23(4):198–203. doi: 10.1016/j.carpath.2014.03.002
  40. Tohno Y, Tohno S, Minami T, et al. Different accumulation of elements in proximal and distal parts of the left anterior descending artery beneath the myocardial bridge. Biol Trace Elem Res. 2016;171(1):17–25. doi: 10.1007/s12011-015-0498-x
  41. Humphrey JD. Mechanisms of vascular remodeling in hypertension. Am J Hypertens. 2021;34(5):432–441. doi: 10.1093/ajh/hpaa195
  42. Holzapfel GA, Sommer G, Gasser CT, Regitnig P. Determination of layer-specific mechanical properties of human coronary arteries with nonatherosclerotic intimal thickening and related constitutive modeling. Am J Physiol Heart Circ Physiol. 2005;289(5):H2048–H2058. doi: 10.1152/ajpheart.00934.2004
  43. Ghorbannia A, Jurkiewicz H, Nasif L, et al. Coarctation duration and severity predict risk of hypertension precursors in a preclinical model and hypertensive status among patients. Hypertension. 2024;81(5):1115–1124. doi: 10.1161/HYPERTENSIONAHA.123.22142
  44. Mishani S, Belhoul-Fakir H, Lagat C, et al. Stress distribution in the walls of major arteries: implications for atherogenesis. Quant Imaging Med Surg. 2021;11(8):3494–3505. doi: 10.21037/qims-20-614
  45. Mikhin VP, Vorotyntseva VV, Gromnatsky NI, Anikin VV. Changes in the elasticity of the vascular wall of arteries and markers of angiopathy on the background of long statin therapy in patients with arterial hypertension with high cardiovascular risk. Humans and their health. 2020;(4):37–45. EDN: DLJVWA doi: 10.21626/vestnik/2020-4/05
  46. Bhargav VN, Francescato N, Mettelsiefen H, et al. Spatio-temporal relationship between three-dimensional deformations of a collapsible tube and the downstream flow field. J Fluids Struct. 2024;127:104122. doi: 10.1016/j.jfluidstructs.2024.104122
  47. Kandangwa P, Cheng K, Patel M, et al. Relative residence time can account for half of the anatomical variation in fatty streak prevalence within the right coronary artery. Ann Biomed Eng. 2025;53(1):144–157. doi: 10.1007/s10439-024-03607-9
  48. Chatzizisis YS, Coskun AU, Jonas M, et al. Role of endothelial shear stress in the natural history of coronary atherosclerosis and vascular remodeling: molecular, cellular, and vascular behavior. J Am Coll Cardiol. 2007;49(25):2379–2393. doi: 10.1016/j.jacc.2007.02.059
  49. Samady H, Eshtehardi P, McDaniel MC, et al. Coronary artery wall shear stress is associated with progression and transformation of atherosclerotic plaque and arterial remodeling in patients with coronary artery disease. Circulation. 2011;124(7):779–788. doi: 10.1161/CIRCULATIONAHA.111.021824
  50. Asfandiyar, Hadi N, Ali Zaidi I, et al. Estimation of serum malondialdehyde (a marker of oxidative stress) as a predictive biomarker for the severity of coronary artery disease (CAD) and cardiovascular outcomes. Cureus. 2024;16(9):e69756. doi: 10.7759/cureus.69756
  51. Yong ASC, Pargaonkar VS, Wong CCY, et al. Abnormal shear stress and residence time are associated with proximal coronary atheroma in the presence of myocardial bridging. Int J Cardiol. 2021;340:7–13. doi: 10.1016/j.ijcard.2021.08.011
  52. Zhang H, Cao Y. A bibliometric analysis of myocardial bridge combined with myocardial infarction. Medicine (Baltimore). 2024;103(23):e38420. doi: 10.1097/MD.0000000000038420
  53. Ambrosi D, Ben Amar M, Cyron CJ, et al. Growth and remodelling of living tissues: perspectives, challenges and opportunities. J R Soc Interface. 2019;16(157):20190233. doi: 10.1098/rsif.2019.0233
  54. Tadic M, Cuspidi C, Marwick TH. Phenotyping the hypertensive heart. Eur Heart J. 2022;43(38):3794–3810. doi: 10.1093/eurheartj/ehac393
  55. Neutel CHG, Weyns AS, Leloup A, et al. Increasing pulse pressure ex vivo, mimicking acute physical exercise, induces smooth muscle cell-mediated de-stiffening of murine aortic segments. Commun Biol. 2023;6(1):1137. doi: 10.1038/s42003-023-05530-6
  56. Moise K, Arun KM, Pillai M, et al. Endothelial cell elongation and alignment in response to shear stress requires acetylation of microtubules. Front Physiol. 2024;15:1425620. doi: 10.3389/fphys.2024.1425620
  57. Chen L, Qu H, Liu B, et al. Low or oscillatory shear stress and endothelial permeability in atherosclerosis. Front Physiol. 2024;15:1432719. doi: 10.3389/fphys.2024.1432719
  58. Chen H, Zhao M, Li Y, et al. A study on the ultimate mechanical properties of middle-aged and elderly human aorta based on uniaxial tensile test. Front Bioeng Biotechnol. 2024;12:1357056. doi: 10.3389/fbioe.2024.1357056
  59. Chen H, Luo T, Zhao X, et al. Microstructural constitutive model of active coronary media. Biomaterials. 2013;34(31):7575–7583. doi: 10.1016/j.biomaterials.2013.06.035
  60. Pineda-Castillo SA, Aparicio-Ruiz S, Burns MM, et al. Linking the region-specific tissue microstructure to the biaxial mechanical properties of the porcine left anterior descending artery. Acta Biomater. 2022;150:295–309. doi: 10.1016/j.actbio.2022.07.036
  61. Latorre M, Humphrey JD. Modeling mechano-driven and immuno-mediated aortic maladaptation in hypertension. Biomech Model Mechanobiol. 2018;17(5):1497–1511. doi: 10.1007/s10237-018-1041-8
  62. Kuyanova J, Dubovoi A, Fomichev A, et al. Hemodynamics of vascular shunts: trends, challenges, and prospects. Biophys Rev. 2023;15(5):1287–1301. doi: 10.1007/s12551-023-01149-3
  63. Kandilova VN. Heart and vessel remodeling in different age groups of patients with arterial hypertension. Eurasian heart journal. 2019;(4):86–96. doi: 10.38109/2225-1685-2019-4-86-96
  64. Liu J, Lin Q, Guo D, et al. Association between pulse pressure and carotid intima-media thickness among low-income adults aged 45 years and older: a population-based cross-sectional study in rural China. Front Cardiovasc Med. 2020;7:547365. doi: 10.3389/fcvm.2020.547365
  65. Rowland EM, Bailey EL, Weinberg PD. Estimating arterial cyclic strain from the spacing of endothelial nuclei. Exp Mech. 2021;61(1):171–190. doi: 10.1007/s11340-020-00655-9
  66. Li X, Ni Q, He X, et al. Tensile force-induced cytoskeletal remodeling: Mechanics before chemistry. PLoS Comput Biol. 2020;16(6):e1007693. doi: 10.1371/journal.pcbi.1007693
  67. Glushchenko ES, Antonova AV, Svekolkin VP, et al. Quantitative analysis of activation of signaling pathways of radioresistant and radiosensitive cancer cell lines. Fundamental Research. 2014;12–2:307–311. EDN: TENFAX
  68. Choi ET, Engel L, Callow AD, et al. Inhibition of neointimal hyperplasia by blocking alpha V beta 3 integrin with a small peptide antagonist GpenGRGDSPCA. J Vasc Surg. 1994;19(1):125–134. doi: 10.1016/s0741-5214(94)70127-x
  69. Katsumi A, Orr AW, Tzima E, Schwartz MA. Integrins in mechanotransduction. J Biol Chem. 2004;279(13):12001–12004. doi: 10.1074/jbc.R300038200
  70. Anwar MA, Shalhoub J, Lim CS, et al. The effect of pressure-induced mechanical stretch on vascular wall differential gene expression. J Vasc Res. 2012;49(6):463–478. doi: 10.1159/000339151
  71. Bartuś M, Lomnicka M, Lorkowska B, et al. Hypertriglyceridemia but not hypercholesterolemia induces endothelial dysfunction in the rat. Pharmacol Rep. 2005;57 Suppl:127–137.
  72. Cao G, Xuan X, Hu J, et al. How vascular smooth muscle cell phenotype switching contributes to vascular disease. Cell Commun Signal. 2022;20(1):180. doi: 10.1186/s12964-022-00993-2
  73. Serebryakova ON, Ivanova VV, Milto IV. Features of the molecular phenotype and ultrastructure of smooth myocytes of the ascending aorta of premature rats. Tsitologiya. 2024;66(3):289–298. EDN: PEBMCK doi: 10.31857/S0041377124030091
  74. Hadjadj L, Monori-Kiss A, Horváth EM, et al. Geometric, elastic and contractile-relaxation changes in coronary arterioles induced by Vitamin D deficiency in normal and hyperandrogenic female rats. Microvasc Res. 2019;122:78–84. doi: 10.1016/j.mvr.2018.11.011
  75. Claes E, Atienza JM, Guinea GV, et al. Mechanical properties of human coronary arteries. Annu Int Conf IEEE Eng Med Biol Soc. 2010;2010:3792–3795. doi: 10.1109/IEMBS.2010.5627560
  76. Johnston A, Callanan A. Recent methods for modifying mechanical properties of tissue-engineered scaffolds for clinical applications. Biomimetics (Basel). 2023;8(2):205. doi: 10.3390/biomimetics8020205
  77. Chen H, Kassab GS. Microstructure-based constitutive model of coronary artery with active smooth muscle contraction. Sci Rep. 2017;7(1):9339. doi: 10.1038/s41598-017-08748-7
  78. Feng Y, Wu H, Huo Y. Experimental measurement and modeling analysis of active and passive mechanical properties of arterial vessel wall. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2020;37(6):939–947. doi: 10.7507/1001-5515.202008030
  79. Madhkour R, Ksouri H, Noble J, et al. Myocardial bridging: a contemporary review. Rev Med Suisse. 2019;15(655):1232–1238.
  80. Chen L, Yu WY, Liu R, et al. A bibliometric analysis on the progress of myocardial bridge from 1980 to 2022. Front Cardiovasc Med. 2023;9:1051383. doi: 10.3389/fcvm.2022.1051383
  81. Damşa T, Appel E, Cristidis V. “Blood-hammer” phenomenon in cerebral hemodynamics. Bellman Prize in Mathematical Biosciences. 1976;29:193–202. doi: 10.1016/0025-5564(76)90102-4
  82. Chuiko GP, Dvornik OV, Shyian SI, Baganov YA. Blood hammer phenomenon in human aorta: Theory and modeling. Math Biosci. 2018;303:148–154. doi: 10.1016/j.mbs.2018.06.009
  83. Mynard JP, Kondiboyina A, Kowalski R, et al. Measurement, analysis and interpretation of pressure/flow waves in blood vessels. Front Physiol. 2020;11:1085. doi: 10.3389/fphys.2020.01085

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Алгоритм отбора первоисточников.

Скачать (253KB)

© Эко-Вектор, 2025



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 71733 от 08.12.2017.