The role of selenium in the pathogenesis and therapy of inflammatory bowel diseases

封面


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

In recent decades, Russia, as well as around the world, has recorded a steady increase in the incidence of inflammatory bowel diseases, which include ulcerative colitis and Crohn’s disease. The incidence of inflammatory bowel diseases in Russia accounts for 4.1 per 100 thousand of the population for ulcerative colitis and 0.8 per 100 thousand – for Crohn’s disease. The prevalence of inflammatory bowel diseases in Russia is 19.3–29.8 cases per 100 thousand of the population for ulcerative colitis and 3.0–4.5 per 100 thousand – for Crohn’s disease.

In recent years, selenium has attracted the attention of researchers due to its anti-inflammatory and antioxidant properties as well as its ability to influence the intestinal flora. There is evidence that inflammatory bowel diseases has deficiency of trace elements, which is more often detected during active period of the disease than during remission.

The purpose of the review is to summarize and analyze current literature data on the relationship between selenium and inflammatory bowel diseases, with special emphasis on the mechanism and function of selenium in intestinal inflammation as well as to discuss the possible therapeutic use of selenium in inflammatory bowel diseases. The authors conducted a search for publications in the electronic databases PubMed and eLibrary. After the selection procedure, 87 studies were included in the review.

Due to its anti-inflammatory and antioxidant properties, the concentration of selenium can be crucial in the occurrence and development of inflammatory bowel diseases. Dietary recommendations with the inclusion of selenium gradually improve the quality of life of patients with inflammatory bowel diseases. The development and use of selenium drugs have also provided new therapy strategies. In the future, a large number of experimental and clinical studies are still needed to confirm the relationship between selenium and inflammatory bowel diseases, which, in turn, will mark a new turn in the prevention and treatment of these severe chronic diseases.

全文:

受限制的访问

作者简介

Tatyana Glazunova

I.M. Sechenov First Moscow State Medical University

Email: tanya.glazunova.00@mail.ru
ORCID iD: 0009-0006-9275-2358

resident

俄罗斯联邦, Moscow

Riana Mameeva

Dagestan State Medical University

Email: rianamameeva@gmail.com
ORCID iD: 0009-0009-1704-867X

resident

俄罗斯联邦, Makhachkala

Sofia Samsonova

Russian University of Medicine

Email: sofya.samsonova.00@inbox.ru
ORCID iD: 0009-0005-9247-8179
俄罗斯联邦, Moscow

Aleksander Ryzhov

V.I. Vernadsky Crimean Federal University

Email: alexanderry7@gmail.com
ORCID iD: 0009-0003-1603-2920
俄罗斯联邦, Simferopol

Aleksey Nedilko

Rostov State Medical University

Email: alex.wick7@mail.ru
ORCID iD: 0009-0008-9463-1001
俄罗斯联邦, Rostov-on-Don

Sergey Shpenev

Rostov State Medical University

Email: Sergeyshpenev148@gmail.com
ORCID iD: 0009-0000-9316-8141
俄罗斯联邦, Rostov-on-Don

Julia Khaiminova

Kursk State Medical University

Email: yuliyahaiminova@gmail.com
ORCID iD: 0009-0009-2519-0385
俄罗斯联邦, Kursk

Ekaterina Ilina

Russian University of Medicine

Email: ekaterina07122001@yandex.ru
ORCID iD: 0009-0009-7309-5876
俄罗斯联邦, Moscow

Vasiliy Evtushenko-Sigaev

Russian University of Medicine

Email: evtusenkosigaev@gmail.com
ORCID iD: 0009-0006-8360-3481
俄罗斯联邦, Moscow

Linara Ilyasova

Bashkir State Medical University

编辑信件的主要联系方式.
Email: medicalscience@bk.ru
ORCID iD: 0009-0009-5612-3484
俄罗斯联邦, Ufa

Milana Eloeva

N.I. Pirogov Russian National Research Medical University

Email: milanalananaa@icloud.com
ORCID iD: 0009-0009-1006-7122
俄罗斯联邦, Moscow

Markha Ayubova

N.I. Pirogov Russian National Research Medical University

Email: markhakhasan@gmail.com
ORCID iD: 0009-0002-4582-3361
俄罗斯联邦, Moscow

Khava Bakhmurzieva

N.I. Pirogov Russian National Research Medical University

Email: bakhmurzieva00@mail.ru
ORCID iD: 0009-0004-8935-2113
俄罗斯联邦, Moscow

Rafael Bunatyan

Russian University of Medicine

Email: molka69@mail.ru
ORCID iD: 0009-0009-1864-6401
俄罗斯联邦, Moscow

参考

  1. Sheptulin AA, Vinogradskaya KE. Inflammatory bowel diseases and irritable bowel syndrome: overlap of two nosological forms or two variants of the same disease? Russian Journal of Gastroenterology, Hepatology, Coloproctology. 2019;29(5):43–48. EDN: FXXPVZ doi: 10.22416/1382-4376-2019-29-5-43-48
  2. Kniazev OV, Shkurko TV, Kagramanova AV, et al. Epidemiology of inflammatory bowel disease. State of the problem (review). Russian Journal of Evidence-Based Gastroenterology. 2020;9(2):66–73. EDN: UFTCSZ doi: 10.17116/dokgastro2020902166
  3. Pershko AM, Grinevich VB, Solovyov IA, et al. Private the pathogenesis of inflammatory bowel diseases. Experimental and Clinical Gastroenterology. 2018;(5):140–149. EDN: OZPLJZ
  4. Likutov AA, Veselov VV, Pritula NA, et al. Possibilities of videocapsule endoscopy in the diagnosis of inflammatory bowel diseases. Endoscopic Surgery. 2017;23(2):23-27. EDN: ZEHQJX doi: 10.17116/endoskop201723223-27
  5. Belousova EA, Kozlov IG, Abdulganieva DI, et al. Immunological aspects of determination of an adequate biological treatment sequence for inflammatory bowel diseases: the expert board statement (St. Petersburg, May 22, 2021). Almanac of Clinical Medicine. 2021;49(7):485–495. doi: 10.18786/2072-0505-2021-49-060
  6. Knyazev OV, Kagramanova AV, Lishchinskaya AA, et al. Efficacy and safety of dual therapy — biological and small molecules in patients with ulcerative colitis. Experimental and Clinical Gastroenterology. 2023;(9):5–12. EDN: GZZYMN doi: 10.31146/1682-8658-ecg-217-9-5-12
  7. Bakulin IG, Skalinskaya MI, Maev IV, et al. Pharmacotherapy of inflammatory bowel diseases: efficacy performance and safety management. Terapevticheskii Arkhiv. 2021;93(8):841–852. EDN: WAMTBH doi: 10.26442/00403660.2021.08.200982
  8. Higashiyama M, Hokaria R. New and emerging treatments for inflammatory bowel disease. Digestion. 2023;104(1):74–81. doi: 10.1159/000527422
  9. Ignatieva VI, Avxentyeva MV, Omel’ianovskiĭ VV, Derkach EV. Socioeconomic burden of inflammatory bowel disease in the Russian Federation. Russian Journal of Preventive Medicine and Public Health. 2020;23(2):19-25. EDN: CPIWST doi: 10.17116/profmed20202302119
  10. Wang F, Sun N, Zeng H, et al. Selenium deficiency leads to inflammation, autophagy, endoplasmic reticulum stress, apoptosis and contraction abnormalities via affecting intestinal flora in intestinal smooth muscle of mice. Front Immunol. 2022;13:947655. doi: 10.3389/fimmu.2022.947655
  11. Kamalova AA, Safina ER, Nizamova RA, et al. Nutrition of children with inflammatory bowel disease. Ros Vestn Perinatol i Pediatr. 2020;65:(5):145–151. EDN: XMYBZQ doi: 10.21508/1027-4065-2020-65-5-145-151
  12. Ghishan FK, Kiela PR. Vitamins and minerals in inflammatory bowel disease. Gastroenterol Clin North Am. 2017;46(4):797–808. doi: 10.1016/j.gtc.2017.08.011
  13. Weisshof R, Chermesh I. Micronutrient deficiencies in inflammatory bowel disease. Curr Opin Clin Nutr Metab Care. 2015;18(6):576–581. doi: 10.1097/MCO.0000000000000226
  14. Kuropatkina TA, Medvedeva NA, Medvedev OS. The role of selenium in cardiology. Kardiologiia. 2021;61(3):96–104. EDN: RJQSOX doi: 10.18087/cardio.2021.3.n1186
  15. Ye R, Huang J, Wang Z, et al. Trace element selenium effectively alleviates intestinal diseases. Int J Mol Sci. 2021;22(21):11708. doi: 10.3390/ijms222111708
  16. Troshina EA, Senyushkina ES, Terekhova MA. The role of selenium in the pathogenesis of thyroid disease. Clinical and experimental thyroidology. 2018;14(4):192–205. EDN: NOEQGO doi: 10.14341/ket10157
  17. Shih EV, Mahova AA, Eremenko NN, Grebenschikova LY. Polyunsaturated fatty acids and selenium, as an essential component of micronutrient support during pregnancy. RMJ. 2017;(2):126–123. (In Russ.)
  18. Hariharan S, Dharmaraj S. Selenium and selenoproteins: it’s role in regulation of inflammation. Inflammopharmacology. 2020;28(3):667–695. doi: 10.1007/s10787-020-00690-x
  19. Guevara Agudelo FA, Leblanc N, Bourdeau-Julien I, et al. Impact of selenium on the intestinal microbiome-eCBome axis in the context of diet-related metabolic health in mice. Front Immunol. 2022;13:1028412. doi: 10.3389/fimmu.2022.1028412
  20. Calder PC, Ortega EF, Meydani SN, et al. Nutrition, immunosenescence, and infectious disease: an overview of the scientific evidence on micronutrients and on modulation of the gut microbiota. Adv Nutr. 2022;13(5):1–26. doi: 10.1093/advances/nmac052
  21. Bubnova NV, Timofeeva NYu, Kostrova OYu, et al. The biological role of selenium (literature review). Acta Medica Eurasia. 2023;(2):114–123. EDN: GPWVYW doi: 10.47026/2413-4864-2023-2-114-123
  22. Zhang F, Li X, Wei Y. Selenium and selenoproteins in health. Biomolecules. 2023;13(5):799. doi: 10.3390/biom13050799
  23. Lv Q, Liang X, Nong K, et al. Advances in research on the toxicological effects of selenium. Bull Environ Contam Toxicol. 2021;106(5):715–726. doi: 10.1007/s00128-020-03094-3
  24. Ala M, Kheyri Z. The rationale for selenium supplementation in inflammatory bowel disease: a mechanism-based point of view. Nutrition. 2021;85:111153. doi: 10.1016/j.nut.2021.111153
  25. Kieliszek M, Błażejak S. Current knowledge on the importance of selenium in food for living organisms: a review. Molecules. 2016;21(5):609. doi: 10.3390/molecules21050609
  26. Vaghari-Tabari M, Jafari-Gharabaghlou D, Sadeghsoltani F, et al. Zinc and selenium in inflammatory bowel disease: trace elements with key roles? Biol Trace Elem Res. 2021;199(9):3190–3204. doi: 10.1007/s12011-020-02444-w
  27. Gîlcă-Blanariu GE, Diaconescu S, Ciocoiu M, Ștefănescu G. New insights into the role of trace elements in IBD. Biomed Res Int. 2018;2018:1813047. doi: 10.1155/2018/1813047
  28. Filippini T, Fairweather-Tait S, Vinceti M. Selenium and immune function: a systematic review and meta-analysis of experimental human studies. Am J Clin Nutr. 2023;117(1):93–110. doi: 10.1016/j.ajcnut.2022.11.007
  29. Zhao M, Xia P, Zhang X, et al. Selenium-containing soybean peptides ameliorate intestinal inflammation and modulate gut microbiota dysbacteriosis in DSS-induced ulcerative colitis mice. Food Funct. 2023;14(13):6187–6199. doi: 10.1039/d3fo00963g
  30. Wang W, Kou F, Wang J, et al. Pretreatment with millet-derived selenylated soluble dietary fiber ameliorates dextran sulfate sodium-induced colitis in mice by regulating inflammation and maintaining gut microbiota balance. Front Nutr. 2022;9:928601. doi: 10.3389/fnut.2022.928601
  31. Zhong Y, Jin Y, Zhang Q, et al. Comparison of selenium-enriched Lactobacillusparacasei, selenium-enriched yeast, and selenite for the alleviation of DSS-induced colitis in mice. Nutrients. 2022;14(12):2433. doi: 10.3390/nu14122433
  32. Viola A, Munari F, Sánchez-Rodríguez R, et al. The metabolic signature of macrophage responses. Front Immunol. 2019;10:1462. doi: 10.3389/fimmu.2019.01462
  33. Nettleford SK, Prabhu KS. Selenium and selenoproteins in gut inflammation — a review. Antioxidants (Basel). 2018;7(3):36. doi: 10.3390/antiox7030036
  34. Zhou Y, Khan H, Xiao J, Cheang WS. Effects of arachidonic acid metabolites on cardiovascular health and disease. Int J Mol Sci. 2021;22(21):12029. doi: 10.3390/ijms222112029
  35. Kudva AK, Shay AE, Prabhu KS. Selenium and inflammatory bowel disease. Am J Physiol Gastrointest Liver Physiol. 2015;309(2):71–77. doi: 10.1152/ajpgi.00379.2014
  36. Misra S, Lee TJ, Sebastian A, et al. Loss of selenoprotein W in murine macrophages alters the hierarchy of selenoprotein expression, redox tone, and mitochondrial functions during inflammation. Redox Biol. 2023;59:102571. doi: 10.1016/j.redox.2022.102571
  37. Li J, Guo C, Wu J. 15-Deoxy-∆-12,14-prostaglandin J2 (15d-PGJ2), an endogenous ligand of PPAR-γ: function and mechanism. PPAR Res. 2019;2019:7242030. doi: 10.1155/2019/7242030
  38. Kaushal N, Kudva AK, Patterson AD, et al. Crucial role of macrophage selenoproteins in experimental colitis. J Immunol. 2014;193(7):3683–3692. doi: 10.4049/jimmunol.1400347
  39. Kim W, Jang JH, Zhong X, et al. 15-Deoxy-Δ12,14-prostaglandin J2 promotes resolution of experimentally induced colitis. Front Immunol. 2021;12:615803. doi: 10.3389/fimmu.2021.615803
  40. Lee BR, Paing MH, Sharma-Walia N. Cyclopentenone prostaglandins: biologically active lipid mediators targeting inflammation. Front Physiol. 2021;12:640374. doi: 10.3389/fphys.2021.640374
  41. Mulero MC, Huxford T, Ghosh G. NF-κB, IκB, and IKK: integral components of immune system signaling. Adv Exp Med Biol. 2019;1172:207–226. doi: 10.1007/978-981-13-9367-9_10
  42. Andrés CMC, Pérez de la Lastra JM, Juan CA, et al. Antioxidant metabolism pathways in vitamins, polyphenols, and selenium: parallels and divergences. Int J Mol Sci. 2024;25(5):2600. doi: 10.3390/ijms25052600
  43. Pei J, Pan X, Wei G, Hua Y. Research progress of glutathione peroxidase family (GPX) in redoxidation. Front Pharmacol. 2023;14:1147414. doi: 10.3389/fphar.2023.1147414
  44. Deng Z, Zhao Y, Ma Z, et al. Pathophysiological role of ion channels and transporters in gastrointestinal mucosal diseases. Cell Mol Life Sci. 2021;78(24):8109–8125. doi: 10.1007/s00018-021-04011-5
  45. Tian T, Wang Z, Zhang J. Pathomechanisms of oxidative stress in inflammatory bowel disease and potential antioxidant therapies. Oxid Med Cell Longev. 2017;2017:4535194. doi: 10.1155/2017/4535194
  46. Shen Y, Huang H, Wang Y, et al. Antioxidant effects of Se-glutathione peroxidase in alcoholic liver disease. J Trace Elem Med Biol. 2022;74:127048. doi: 10.1016/j.jtemb.2022.127048
  47. Schwarz M, Gazdarica M, Froňková E, et al. Functional studies associate novel DUOX2 gene variants detected in heterozygosity to Crohn’s disease. Mol Biol Rep. 2024;51(1):399. doi: 10.1007/s11033-024-09317-8
  48. Poncelet L, Dumont JE, Miot F, De Deken X. The Dual Oxidase Duox2 stabilized with DuoxA2 in an enzymatic complex at the surface of the cell produces extracellular H2O2able to induce DNA damage in an inducible cellular model. Exp Cell Res. 2019;384(1):111620. doi: 10.1016/j.yexcr.2019.111620
  49. Kyodo R, Takeuchi I, Narumi S, et al. Novel biallelic mutations in the DUOX2 gene underlying very early-onset inflammatory bowel disease: a case report. Clin Immunol. 2022;238:109015. doi: 10.1016/j.clim.2022.109015
  50. Dang PM, Rolas L, El-Benna J. The dual role of reactive oxygen species-generating nicotinamide adenine dinucleotide phosphate oxidases in gastrointestinal inflammation and therapeutic perspectives. Antioxid Redox Signal. 2020;33(5):354–373. doi: 10.1089/ars.2020.8018
  51. Guan Q, Zhang J. Recent advances: the imbalance of cytokines in the pathogenesis of inflammatory bowel disease. Mediators Inflamm. 2017;2017:4810258. doi: 10.1155/2017/4810258
  52. Flohé L, Toppo S, Orian L. The glutathione peroxidase family: Discoveries and mechanism. Free Radic Biol Med. 2022;187:113–122. doi: 10.1016/j.freeradbiomed.2022.05.003
  53. Ammar M, Bahloul N, Amri O, et al. Oxidative stress in patients with asthma and its relation to uncontrolled asthma. J Clin Lab Anal. 2022;36(5):e24345. doi: 10.1002/jcla.24345
  54. Peñailillo L, Miranda-Fuentes C, Gutiérrez S, et al. Systemic inflammation but not oxidative stress is associated with physical performance in moderate chronic obstructive pulmonary disease. Adv Exp Med Biol. 2024;1450:121–130. doi: 10.1007/5584_2023_784
  55. Janetzki JL, Pratt NL, Ward MB, Sykes MJ. Application of an integrative drug safety model for detection of adverse drug events associated with inhibition of glutathione peroxidase 1 in chronic obstructive pulmonary disease. Pharm Res. 2023;40(6):1553–1568. doi: 10.1007/s11095-023-03516-x
  56. Brigelius-Flohé R, Flohé L. Regulatory phenomena in the glutathione peroxidase superfamily. Antioxid Redox Signal. 2020;33(7):498–516. doi: 10.1089/ars.2019.7905
  57. Mayr L, Grabherr F, Schwärzler J, et al. Dietary lipids fuel GPX4-restricted enteritis resembling Crohn’s disease. Nat Commun. 2020;11(1):1775. doi: 10.1038/s41467-020-15646-6
  58. Xie Y, Kang R, Klionsky DJ, Tang D. GPX4 in cell death, autophagy, and disease. Autophagy. 2023;19(10):2621–2638. doi: 10.1080/15548627.2023.2218764
  59. Short SP, Pilat JM, Williams CS. Roles for selenium and selenoprotein P in the development, progression, and prevention of intestinal disease. Free Radic Biol Med. 2018;127:26–35. doi: 10.1016/j.freeradbiomed.2018.05.066
  60. Nettleford SK, Liao C, Short SP, et al. Selenoprotein W ameliorates experimental colitis and promotes intestinal epithelial repair. Antioxidants (Basel). 2023;12(4):850. doi: 10.3390/antiox12040850
  61. Zhou B, Yuan Y, Zhang S, et al. Intestinal flora and disease mutually shape the regional immune system in the intestinal tract. Front Immunol. 2020;11:575. doi: 10.3389/fimmu.2020.00575
  62. Kang DY, Park JL, Yeo MK, et al. Diagnosis of Crohn’s disease and ulcerative colitis using the microbiome. BMC Microbiol. 2023;23(1):336. doi: 10.1186/s12866-023-03084-5
  63. Qian X, Jiang H, Wu Y, et al. Fecal microbiota transplantation combined with prebiotics ameliorates ulcerative colitis in mice. Future Microbiol. 2023;18:1251–1263. doi: 10.2217/fmb-2023-0001
  64. Shang S, Zhu J, Liu X, et al. The impacts of fecal microbiota transplantation from same sex on the symptoms of ulcerative colitis patients. Pol J Microbiol. 2023;72(3):247–268. doi: 10.33073/pjm-2023-025
  65. Akahoshi N, Anan Y, Hashimoto Y, et al. Dietary selenium deficiency or selenomethionine excess drastically alters organ selenium contents without altering the expression of most selenoproteins in mice. J Nutr Biochem. 2019;69:120–129. doi: 10.1016/j.jnutbio.2019.03.020
  66. Kang R, Wang W, Liu Y, et al. Dietary selenium sources alleviate immune challenge induced by Salmonella Enteritidis potentially through improving the host immune response and gut microbiota in laying hens. Front Immunol. 2022;13:928865. doi: 10.3389/fimmu.2022.928865
  67. Zhao Y, Chen H, Li W, et al. Selenium-containing tea polysaccharides ameliorate DSS-induced ulcerative colitis via enhancing the intestinal barrier and regulating the gut microbiota. Int J Biol Macromol. 2022;209:356–366. doi: 10.1016/j.ijbiomac.2022.04.028
  68. Keshteli AH, Valcheva R, Nickurak C, et al. Anti-inflammatory diet prevents subclinical colonic inflammation and alters metabolomic profile of ulcerative colitis patients in clinical remission. Nutrients. 2022;14(16):3294. doi: 10.3390/nu14163294
  69. Wang K, Qin L, Cao J, et al. κ-Selenocarrageenan oligosaccharides prepared by deep-sea enzyme alleviate inflammatory responses and modulate gut microbiota in ulcerative colitis mice. Int J Mol Sci. 2023;24(5):4672. doi: 10.3390/ijms24054672
  70. Zhu D, Wu H, Jiang K, et al. Zero-valence selenium-enriched prussian blue nanozymes reconstruct intestinal barrier against inflammatory bowel disease via inhibiting ferroptosis and T cells differentiation. Adv Healthc Mater. 2023;12(12):e2203160. doi: 10.1002/adhm.202203160
  71. Danciu AM, Ghitea TC, Bungau AF, Vesa CM. The crucial role of diet therapy and selenium on the evolution of clinical and paraclinical parameters in patients with metabolic syndrome. J Nutr Metab. 2023;2023:6632197. doi: 10.1155/2023/6632197
  72. Crooks B, Misra R, Arebi N, et al. The dietary practices and beliefs of British South Asian people living with inflammatory bowel disease: a multicenter study from the United Kingdom. Intest Res. 2022;20(1):53–63. doi: 10.5217/ir.2020.00079
  73. Xia X, Zhang X, Liu M, et al. Toward improved human health: efficacy of dietary selenium on immunity at the cellular level. Food Funct. 2021;12(3):976–989. doi: 10.1039/d0fo03067h
  74. Kopp TI, Outzen M, Olsen A, et al. Genetic polymorphism in selenoprotein P modifies the response to selenium-rich foods on blood levels of selenium and selenoprotein P in a randomized dietary intervention study in Danes. Genes Nutr. 2018;13:20. doi: 10.1186/s12263-018-0608-4
  75. Alexander J, Olsen AK. Selenium — a scoping review for Nordic Nutrition Recommendations 2023. Food Nutr Res. 2023;67. doi: 10.29219/fnr.v67.10320
  76. Reddavide R, Rotolo O, Caruso MG, et al. The role of diet in the prevention and treatment of Inflammatory Bowel Diseases. Acta Biomed. 2018;89(9–S):60–75. doi: 10.23750/abm.v89i9-S.7952
  77. Di Renzo L, Gualtieri P, De Lorenzo A. Diet, nutrition and chronic degenerative diseases. Nutrients. 2021;13(4):1372. doi: 10.3390/nu13041372
  78. Akasheva DU, Drapkina OM. Mediterranean diet: origin history, main components, evidence of benefits and feasibility to adapt to the Russian reality. Rational Pharmacotherapy in Cardiology. 2020;16(2):307–316. EDN: VFPXRL doi: 10.20996/1819-6446-2020-04-03
  79. Chicco F, Magrì S, Cingolani A, et al. Multidimensional impact of mediterranean diet on IBD patients. Inflamm Bowel Dis. 2021;27(1):1–9. doi: 10.1093/ibd/izaa097
  80. Khazdouz M, Daryani NE, Cheraghpour M, et al. The effect of selenium supplementation on disease activity and immune-inflammatory biomarkers in patients with mild-to-moderate ulcerative colitis: a randomized, double-blind, placebo-controlled clinical trial. Eur J Nutr. 2023;62(8):3125–3134. doi: 10.1007/s00394-023-03214-9
  81. Xiao D, Li T, Huang X, et al. Advances in the study of selenium-enriched probiotics: from the inorganic Se into Se nanoparticles. Mol Nutr Food Res. 2023;67(23):e2300432. doi: 10.1002/mnfr.202300432
  82. Khattab AE, Darwish AM, Othman SI, et al. Anti-inflammatory and immunomodulatory potency of selenium-enriched probiotic mutants in mice with induced ulcerative colitis. Biol Trace Elem Res. 2023;201(1):353–367. doi: 10.1007/s12011-022-03154-1
  83. Hu Y, Jin X, Gao F, et al. Selenium-enriched Bifidobacterium longum DD98 effectively ameliorates dextran sulfate sodium-induced ulcerative colitis in mice. Front Microbiol. 2022;13:955112. doi: 10.3389/fmicb.2022.955112
  84. Hosnedlova B, Kepinska M, Skalickova S, et al. Nano-selenium and its nanomedicine applications: a critical review. Int J Nanomedicine. 2018;13:2107–2128. doi: 10.2147/IJN.S157541
  85. Xiao X, Deng H, Lin X, et al. Selenium nanoparticles: Properties, preparation methods, and therapeutic applications. Chem Biol Interact. 2023;378:110483. doi: 10.1016/j.cbi.2023.110483
  86. Ye R, Guo Q, Huang J, et al. Eucommia ulmoides polysaccharide modified nano-selenium effectively alleviated DSS-induced colitis through enhancing intestinal mucosal barrier function and antioxidant capacity. J Nanobiotechnology. 2023;21(1):222. doi: 10.1186/s12951-023-01965-5
  87. Song D, Cheng Y, Li X, et al. Biogenic nanoselenium particles effectively attenuate oxidative stress-induced intestinal epithelial barrier injury by activating the Nrf2 antioxidant pathway. ACS Appl Mater Interfaces. 2017;9(17):14724–14740. doi: 10.1021/acsami.7b03377

补充文件

附件文件
动作
1. JATS XML
2. Figure. Study search algorithm

下载 (382KB)

版权所有 © Eco-Vector, 2024

许可 URL: https://eco-vector.com/for_authors.php#07

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 71733 от 08.12.2017.


##common.cookie##