Cardiotoxicity and cardiac arrhythmias in cancer therapy: a review of current evidence
- 作者: Kolomyitseva V.A.1, Zaripova L.A.2, Bazhina D.A.3, Aidemirova A.P.1, Gumerov M.S.4, Uyanaeva M.A.1, Furs P.N.4, Gadeeva V.M.4, Salyakhov T.A.4, Gazislamova L.R.4, Vasilyev A.V.4, Koksheneva D.A.5, Osmanov Т.R.1, Fedorenko V.V.1, Gareev A.R.4
-
隶属关系:
- Rostov State Medical University
- Samara State Medical University
- N.N. Burdenko Voronezh State Medical University
- Bashkir State Medical University
- Kuban State Medical University
- 期: 卷 17, 编号 2 (2025)
- 页面: 17-30
- 栏目: Reviews
- ##submission.dateSubmitted##: 17.03.2025
- ##submission.dateAccepted##: 25.06.2025
- ##submission.datePublished##: 30.07.2025
- URL: https://journals.eco-vector.com/vszgmu/article/view/677295
- DOI: https://doi.org/10.17816/mechnikov677295
- EDN: https://elibrary.ru/BPIVSX
- ID: 677295
如何引用文章
详细
Cardiac arrhythmias are among the most frequent and clinically significant manifestations of anticancer therapy-induced cardiotoxicity. Despite substantial progress in oncology and the increasing availability of targeted and immunological treatments, the incidence of cardiovascular complications, including rhythm disturbances, continues to rise.
This article provides a comprehensive review of current evidence on the association between various types of anticancer therapies — including traditional cytotoxic chemotherapy, targeted therapies, immune checkpoint inhibitors, Chimeric antigen receptor T-cell therapy, and Bispecific T-cell engager therapy — and the development of arrhythmias. Special attention is given to pathophysiological mechanisms, including direct cardiomyocyte toxicity, electrophysiological disturbances due to ion channel blockade, ischemic myocardial injury, and inflammatory changes. The review outlines the clinical manifestations of common arrhythmias such as atrial fibrillation, ventricular tachycardia and atrioventricular block caused by different classes of anticancer drugs. Additionally, it discusses modern approaches to the diagnosis, screening, and prevention of arrhythmic complications in patients with cancer. A key emphasis is placed on the importance of a multidisciplinary approach involving close collaboration among cardiologists, oncologists, and clinical pharmacists to optimize treatment safety and efficacy while preventing potentially life-threatening conditions. Finally, the article highlights the need for further research into molecular mechanisms and the development of standardized monitoring algorithms in patients undergoing anticancer therapy, including the application of digital health technologies and artificial intelligence.
全文:

作者简介
Valeria Kolomyitseva
Rostov State Medical University
编辑信件的主要联系方式.
Email: aonext@mail.ru
ORCID iD: 0009-0009-5768-0661
俄罗斯联邦, Nakhichevan Lane, building 29, Rostov-on-Don, 344022
Liana Zaripova
Samara State Medical University
Email: Venera.zaripova.74@mail.ru
ORCID iD: 0009-0001-7749-8762
俄罗斯联邦, Samara
Darina Bazhina
N.N. Burdenko Voronezh State Medical University
Email: bazhinadarina@yandex.ru
ORCID iD: 0009-0007-1278-7903
俄罗斯联邦, Voronezh
Aiganat Aidemirova
Rostov State Medical University
Email: aika.aidemirova22@mail.ru
ORCID iD: 0009-0002-3628-2305
俄罗斯联邦, Rostov-on-Don
Murat Gumerov
Bashkir State Medical University
Email: bashspider@gmail.com
ORCID iD: 0009-0007-3719-2260
俄罗斯联邦, Ufa
Maryam Uyanaeva
Rostov State Medical University
Email: maramuanava@gmail.com
ORCID iD: 0009-0003-6036-1828
俄罗斯联邦, Rostov-on-Don
Pavel Furs
Bashkir State Medical University
Email: pasha.furs.2000@mail.ru
ORCID iD: 0009-0008-2438-0649
俄罗斯联邦, Ufa
Venera Gadeeva
Bashkir State Medical University
Email: gadeevavenera@mail.ru
ORCID iD: 0009-0008-8555-7057
俄罗斯联邦, Ufa
Timur Salyakhov
Bashkir State Medical University
Email: timasalyakhov@icloud.com
ORCID iD: 0009-0003-0027-7181
俄罗斯联邦, Ufa
Liana Gazislamova
Bashkir State Medical University
Email: Gazislamova@bk.ru
ORCID iD: 0009-0008-6715-9338
俄罗斯联邦, Ufa
Artem Vasilyev
Bashkir State Medical University
Email: artem19a19@gmail.com
ORCID iD: 0009-0007-7082-0556
俄罗斯联邦, Ufa
Diana Koksheneva
Kuban State Medical University
Email: kokhseneva123rus16@gmail.com
ORCID iD: 0009-0007-3154-3752
俄罗斯联邦, Krasnodar
Тагир Osmanov
Rostov State Medical University
Email: nata.mitrofanova.78@mail.ru
ORCID iD: 0009-0007-6852-669X
俄罗斯联邦, Rostov-on-Don
Victoria Fedorenko
Rostov State Medical University
Email: fedorovalika128@gmail.com
ORCID iD: 0009-0006-0181-1827
俄罗斯联邦, Rostov-on-Don
Askar Gareev
Bashkir State Medical University
Email: askar.gareev@inbox.ru
ORCID iD: 0009-0008-8862-4884
俄罗斯联邦, Ufa
参考
- Shakhzadova AO, Starinsky VV, Lisichnikova IV. Cancer care to the population of Russia in 2022. Siberian journal of oncology. 2023;22(5):5–13. EDN: PESHHL doi: 10.21294/1814-4861-2023-22-5-5-13
- Glushchenko VA, Irklienko EK. Cardiovascular morbidity is one of the most important health problems. Medicine and healthcare organization. 2019;4(1):56–63. EDN: KNGYDV
- Merabishvili V. The state of oncological care in Russia: malignant neoplasms of the skin (C44). Typical mortality, median survival, observed and relative survival, taking into account the stage of the disease. Population-based research at the federal district level. Problems of oncology. 2021;67(5):640–645. EDN: NHHSND doi: 10.37469/0507-3758-2021-67-5-640-645
- Siegel RL, Giaquinto AN, Jemal A. Cancer statistics, 2024. CA Cancer J Clin. 2024;74(1):12–49. doi: 10.3322/caac.21820
- Cleary S, Rosen SD, Gilbert DC, Langley RE. Cardiovascular health: an important component of cancer survivorship. BMJ Oncol. 2023;2(1):e000090. doi: 10.1136/bmjonc-2023-000090
- Zimakova EI, Orlova IA, Begrambekova YuL. Prevalence and perspective directions for correction of behavioral risk factors of cardiovascular diseases associated with unhealthy diet and low physical activity in young people. South Russian Journal of Therapeutic Practice. 2024;5(3):6–13. doi: 10.21886/2712-8156-2024-5-3-6-13
- Agarwal MA, Sridharan A, Pimentel RC, et al. Ventricular arrhythmia in cancer patients: mechanisms, treatment strategies and future avenues. Arrhythm Electrophysiol Rev. 2023;12:e16. doi: 10.15420/aer.2023.04
- Wortman JE, Lucas VS Jr, Schuster E, et al. Sudden death during doxorubicin administration. Cancer. 1979;44(5):1588–1591. doi: 10.1002/1097-0142(197911)44:5<1588::aid-cncr2820440508>3.0.co;2-x
- Bonsu JM, Kola-Kehinde O, Kim L, et al. Cardiovascular safety communications after US Food and Drug Administration approval of contemporary cancer therapies. JAMA Oncol. 2021;7(11):1722–1723. doi: 10.1001/jamaoncol.2021.4771
- Tonorezos ES, Stillwell EE, Calloway JJ, et al. Arrhythmias in the setting of hematopoietic cell transplants. Bone Marrow Transplant. 2015;50(9):1212–1216. doi: 10.1038/bmt.2015.127
- Potievskaya VI, Akhobekov AA, Kononova EV. Relationship between cardiac arrhythmias and anticancer therapy. Cardiovascular Therapy and Prevention. 2020;19(5):133–141. EDN: FWDMGC doi: 10.15829/1728-8800-2020-2417
- Gumerova KS, Sakhautdinova GM, Polyakova IM. Antitumour drug induced cardiovascular toxicity and current tumour treatment methods. Creative surgery and oncology. 2019;9(4):285–292. EDN: ITUFBA doi: 10.24060/2076-3093-2019-9-4-285-292
- Duan J, Tao J, Zhai M, et al. Anticancer drugs-related QTc prolongation, torsade de pointes and sudden death: current evidence and future research perspectives. Oncotarget. 2018;9(39):25738–25749. doi: 10.18632/oncotarget.25008
- Sun Y, Wang L, Que Y, et al. Ventricular repolarization dynamics in arsenic trioxide treatment of acute promyelocytic leukemia. Int J Cardiol. 2020;306:163–167. doi: 10.1016/j.ijcard.2019.11.099
- Lyon AR, López-Fernández T, Couch LS, et al. 2022 ESC Guidelines on cardio-oncology developed in collaboration with the European Hematology Association (EHA), the European Society for Therapeutic Radiology and Oncology (ESTRO) and the International Cardio-Oncology Society (IC-OS). Eur Heart J. 2022;43(41):4229–4361. doi: 10.1093/eurheartj/ehac244
- Porta-Sánchez A, Gilbert C, Spears D, et al. Incidence, diagnosis, and management of QT prolongation induced by cancer therapies: a systematic review. J Am Heart Assoc. 2017;6(12):e007724. doi: 10.1161/JAHA.117.007724
- Roboz GJ, Ritchie EK, Carlin RF, et al. Prevalence, management, and clinical consequences of QT interval prolongation during treatment with arsenic trioxide. J Clin Oncol. 2014;32(33):3723–3728. doi: 10.1200/JCO.2013.51.2913
- McGuire WP, Rowinsky EK, Rosenshein NB, et al. Taxol: a unique antineoplastic agent with significant activity in advanced ovarian epithelial neoplasms. Ann Intern Med. 1989;111(4):273–279. doi: 10.7326/0003-4819-111-4-273
- Pai VB, Nahata MC. Cardiotoxicity of chemotherapeutic agents: incidence, treatment and prevention. Drug Saf. 2000;22(4):263–302. doi: 10.2165/00002018-200022040-00002
- Rehman W, Arfons LM, Lazarus HM. The rise, fall and subsequent triumph of thalidomide: lessons learned in drug development. Ther Adv Hematol. 2011;2(5):291–308. doi: 10.1177/2040620711413165
- Minoia C, Giannoccaro M, Iacobazzi A, et al. Antineoplastic drug-induced bradyarrhythmias. Expert Opin Drug Saf. 2012;11(5):739–751. doi: 10.1517/14740338.2012.705826
- Tamargo J, Caballero R, Delpón E. Cancer chemotherapy and cardiac arrhythmias: a review. Drug Saf. 2015;38(2):129–152. doi: 10.1007/s40264-014-0258-4
- Rajkumar SV, Rosiñol L, Hussein M, et al. Multicenter, randomized, double-blind, placebo-controlled study of thalidomide plus dexamethasone compared with dexamethasone as initial therapy for newly diagnosed multiple myeloma. J Clin Oncol. 2008;26(13):2171–2177. doi: 10.1200/JCO.2007.14.1853
- Fradley MG, Beckie TM, Brown SA, et al. Recognition, prevention, and management of arrhythmias and autonomic disorders in cardio-oncology: a scientific statement from the American Heart Association. Circulation. 2021;144(3):e41–e55. doi: 10.1161/CIR.0000000000000986.
- Liu R, Li D, Sun F, et al. Melphalan induces cardiotoxicity through oxidative stress in cardiomyocytes derived from human induced pluripotent stem cells. Stem Cell Res Ther. 2020;11(1):470. doi: 10.1186/s13287-020-01984-1
- Minotti G, Menna P, Salvatorelli E, et al. Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol Rev. 2004;56(2):185–229. doi: 10.1124/pr.56.2.6
- Horacek JM, Jakl M, Horackova J, et al. Assessment of anthracycline-induced cardiotoxicity with electrocardiography. Exp Oncol. 2009;31(2):115–117.
- Iwata N, Karasawa M, Omine M, et al. Aclarubicin-associated QTc prolongation and ventricular fibrillation. Cancer Treat Rep. 1984;68(3):527–529.
- Kilickap S, Barista I, Akgul E, et al. Early and late arrhythmogenic effects of doxorubicin. South Med J. 2007;100(3):262–265. doi: 10.1097/01.smj.0000257382.89910.fe
- Mazur M, Wang F, Hodge DO, et al. Burden of cardiac arrhythmias in patients with anthracycline-related cardiomyopathy. JACC Clin Electrophysiol. 2017;3(2):139–150. doi: 10.1016/j.jacep.2016.08.009
- Buza V, Rajagopalan B, Curtis AB. Cancer treatment-induced arrhythmias: focus on chemotherapy and targeted therapies. Circ Arrhythm Electrophysiol. 2017;10(8):e005443. doi: 10.1161/CIRCEP.117.005443
- Dent RG, Mccoll I. 5-fluorouracil and angina. Lancet. 1975;305(7902):347–348. doi: 10.1016/S0140-6736(75)91270-2
- Yilmaz U, Oztop I, Ciloglu A, et al. 5-fluorouracil increases the number and complexity of premature complexes in the heart: a prospective study using ambulatory ECG monitoring. Int J Clin Pract. 2007;61(5):795–801. doi: 10.1111/j.1742-1241.2007.01323.x
- Vaflard P, Ederhy S, Torregrosa C, et al. Fluoropyrimidines cardiac toxicity: 5-fluorouracil, capecitabine, compound S-1 and trifluridine/tipiracil. Bull Cancer. 2018;105(7–8):707–719. doi: 10.1016/j.bulcan.2018.05.005
- Bhullar KS, Lagarón NO, McGowan EM, et al. Kinase-targeted cancer therapies: progress, challenges and future directions. Mol Cancer. 2018;17(1):48. doi: 10.1186/s12943-018-0804-2
- Leiva O, Beaty W, Soo S, et al. Cancer therapy-associated pulmonary hypertension and right ventricular dysfunction: etiologies and prognostic implications. Rev Cardiovasc Med. 2024;25(3):87. doi: 10.31083/j.rcm2503087
- Herrmann J. Tyrosine kinase inhibitors and vascular toxicity: impetus for a classification system? Curr Oncol Rep. 2016;18(6):33. doi: 10.1007/s11912-016-0514-0
- Cheng C, Woronow D, Nayernama A, et al. Ibrutinib-associated ventricular arrhythmia in the FDA Adverse Event Reporting System. Leuk Lymphoma. 2018;59(12):3016–3017. doi: 10.1080/10428194.2018.1457149
- Mathur K, Saini A, Ellenbogen KA, Shepard RK. Profound sinoatrial arrest associated with ibrutinib. Case Rep Oncol Med. 2017;2017:7304021. doi: 10.1155/2017/7304021
- Yun S, Vincelette ND, Acharya U, Abraham I. Risk of atrial fibrillation and bleeding diathesis associated with ibrutinib treatment: a systematic review and pooled analysis of four randomized controlled trials. Clin Lymphoma Myeloma Leuk. 2017;17(1):31–37.e13. doi: 10.1016/j.clml.2016.09.010
- Alexandre J, Salem JE, Moslehi J, et al. Identification of anticancer drugs associated with atrial fibrillation: analysis of the WHO pharmacovigilance database. Eur Heart J Cardiovasc Pharmacother. 2021;7(4):312–320. doi: 10.1093/ehjcvp/pvaa037
- Ahmad J, Thurlapati A, Thotamgari S, et al. Anti-cancer drugs associated atrial fibrillation-an analysis of real-world pharmacovigilance data. Front Cardiovasc Med. 2022;9:739044. doi: 10.3389/fcvm.2022.739044
- Leong DP, Caron F, Hillis C, et al. The risk of atrial fibrillation with ibrutinib use: a systematic review and meta-analysis. Blood. 2016;128(1):138–140. doi: 10.1182/blood-2016-05-712828
- Xiao L, Salem JE, Clauss S, et al. Ibrutinib-mediated atrial fibrillation attributable to inhibition of c-terminal src kinase. Circulation. 2020;142(25):2443–2455. doi: 10.1161/CIRCULATIONAHA.120.049210
- Byrd JC, Hillmen P, Ghia P, et al. Acalabrutinib versus ibrutinib in previously treated chronic lymphocytic leukemia: results of the first randomized phase III trial. J Clin Oncol. 2021;39(31):3441–3452. doi: 10.1200/JCO.21.01210
- Tam CS, Opat S, D’Sa S, et al. A randomized phase 3 trial of zanubrutinib vs ibrutinib in symptomatic Waldenström macroglobulinemia: the ASPEN study. Blood. 2020;136(18):2038–2050. doi: 10.1182/blood.2020006844
- Tam CS, Dimopoulos M, Garcia-Sanz R, et al. Pooled safety analysis of zanubrutinib monotherapy in patients with B-cell malignancies. Blood Adv. 2022;6(4):1296–1308. doi: 10.1182/bloodadvances.2021005621
- Pruis MA, Veerman GDM, Hassing HC, et al. Cardiac toxicity of alectinib in patients with ALK+ lung cancer: outcomes of cardio-oncology follow-up. JACC CardioOncol. 2023;5(1):102–113. doi: 10.1016/j.jaccao.2022.09.006
- Steinberg M. Dasatinib: a tyrosine kinase inhibitor for the treatment of chronic myelogenous leukemia and Philadelphia chromosome-positive acute lymphoblastic leukemia. Clin Ther. 2007;29(11):2289–2308. doi: 10.1016/j.clinthera.2007.11.005
- Zang J, Wu S, Tang L, et al. Incidence and risk of QTc interval prolongation among cancer patients treated with vandetanib: a systematic review and meta-analysis. PLoS One. 2012;7(2):e30353. doi: 10.1371/journal.pone.0030353
- Ghiaseddin A, Reardon D, Massey W, et al. Phase II study of bevacizumab and vorinostat for patients with recurrent World Health Organization grade 4 malignant glioma. Oncologist. 2018;23(2):157–e21. doi: 10.1634/theoncologist.2017-0501
- Bello CL, Mulay M, Huang X, et al. Electrocardiographic characterization of the QTc interval in patients with advanced solid tumors: pharmacokinetic- pharmacodynamic evaluation of sunitinib. Clin Cancer Res. 2009;15(22):7045–7052. doi: 10.1158/1078-0432.CCR-09-1521
- Petrini I, Lencioni M, Ricasoli M, et al. Phase II trial of sorafenib in combination with 5-fluorouracil infusion in advanced hepatocellular carcinoma. Cancer Chemother Pharmacol. 2012;69(3):773–780. doi: 10.1007/s00280-011-1753-2
- Larkin J, Ascierto PA, Dréno B, et al. Combined vemurafenib and cobimetinib in BRAF-mutated melanoma. N Engl J Med. 2014;371(20):1867–1876. doi: 10.1056/NEJMoa1408868
- Shah MH, Binkley P, Chan K, et al. Cardiotoxicity of histone deacetylase inhibitor depsipeptide in patients with metastatic neuroendocrine tumors. Clin Cancer Res. 2006;12(13):3997–4003. doi: 10.1158/1078-0432.CCR-05-2689
- DiNardo CD, Stein EM, de Botton S, et al. Durable remissions with ivosidenib in IDH1-mutated relapsed or refractory AML. N Engl J Med. 2018;378(25):2386–2398. doi: 10.1056/NEJMoa1716984
- Turner NC, Ro J, André F, et al. PALOMA3 Study Group. Palbociclib in hormone-receptor-positive advanced breast cancer. N Engl J Med. 2015;373(3):209–219. doi: 10.1056/NEJMoa1505270
- Cristofanilli M, Turner NC, Bondarenko I, et al. Fulvestrant plus palbociclib versus fulvestrant plus placebo for treatment of hormone-receptor-positive, HER2-negative metastatic breast cancer that progressed on previous endocrine therapy (PALOMA-3): final analysis of the multicentre, double-blind, phase 3 randomised controlled trial. Lancet Oncol. 2016;17(4):425–439. doi: 10.1016/S1470-2045(15)00613-0
- Lee HA, Kim EJ, Hyun SA, et al. Electrophysiological effects of the anti-cancer drug lapatinib on cardiac repolarization. Basic Clin Pharmacol Toxicol. 2010;107(1):614–618. doi: 10.1111/j.1742-7843.2010.00556.x
- Shubnikova EV, Bukatina TM, Velts NYu, et al. Immune response checkpoint inhibitors: new risks of a new class of antitumor agents. Safety and Risk of Pharmacotherapy. 2020;8(1):9–22. doi: 10.30895/2312-7821-2020-8-1-9-22
- Gavrilina OA, Galstyan GM, Shchekina AE, et al. Chimeric antigen receptor T-cell therapy in adult patients with B-cell lymphoproliferative diseases. Russian journal of hematology and transfusiology. 2022;67(1):8–28. doi: 10.35754/0234-5730-2022-67-1-8-28
- Kuznetsova MS, Shiku H, Karaulov AV, Sennikov SV. Modern T cell technologies for immunotherapy of solid tumors. Medical Immunology (Russia). 2023;25(2):271–286. EDN: NHKVTU doi: 10.15789/10.15789/1563-0625-MTC-2444
- Shamova TV, Sitkovskaya AO, Vashchenko LN, Kechedzhieva EE. Adoptive cell therapy: Current advances. South Russian Journal of Cancer. 2020;1(1):43–59. EDN: GWAXME doi: 10.37748/2687-0533-2020-1-1-4
- Maude SL, Laetsch TW, Buechner J, et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N Engl J Med. 2018;378(5):439–448. doi: 10.1056/NEJMoa1709866
- Neelapu SS, Tummala S, Kebriaei P, et al. Chimeric antigen receptor T-cell therapy - assessment and management of toxicities. Nat Rev Clin Oncol. 2018;15(1):47–62. doi: 10.1038/nrclinonc.2017.148
- Lefebvre B, Kang Y, Smith AM, et al. Cardiovascular effects of CAR T cell therapy: a retrospective study. JACC CardioOncol. 2020;2(2):193–203. doi: 10.1016/j.jaccao.2020.04.012
- Ganatra S, Redd R, Hayek SS, et al. Chimeric antigen receptor T-cell therapy-associated cardiomyopathy in patients with refractory or relapsed non-Hodgkin lymphoma. Circulation. 2020;142(17):1687–1690. doi: 10.1161/CIRCULATIONAHA.120.048100
- Goldman A, Maor E, Bomze D, et al. Adverse cardiovascular and pulmonary events associated with chimeric antigen receptor T-cell therapy. J Am Coll Cardiol. 2021;78(18):1800–1813. doi: 10.1016/j.jacc.2021.08.044
- Ganatra S, Parikh R, Neilan TG. Cardiotoxicity of immune therapy. Cardiol Clin. 2019;37(4):385–397. doi: 10.1016/j.ccl.2019.07.008
- Burstein DS, Maude S, Grupp S, et al. Cardiac profile of chimeric antigen receptor T cell therapy in children: a single-institution experience. Biol Blood Marrow Transplant. 2018;24(8):1590–1595. doi: 10.1016/j.bbmt.2018.05.014
- Baik AH, Oluwole OO, Johnson DB, et al. Mechanisms of cardiovascular toxicities associated with immunotherapies. Circ Res. 2021;128(11):1780–1801. doi: 10.1161/CIRCRESAHA.120.315894
- Lazzerini PE, Laghi-Pasini F, Acampa M, et al. Systemic inflammation rapidly induces reversible atrial electrical remodeling: the role of interleukin-6-mediated changes in connexin expression. J Am Heart Assoc. 2019;8(16):e011006. doi: 10.1161/JAHA.118.011006
- Lee DH, Chandrasekhar S, Jain MD, et al. Cardiac and inflammatory biomarker differences in adverse cardiac events after chimeric antigen receptor T-Cell therapy: an exploratory study. Cardiooncology. 2023;9(1):18. doi: 10.1186/s40959-023-00170-5
- Kantarjian H, Stein A, Gökbuget N, et al. Blinatumomab versus chemotherapy for advanced acute lymphoblastic leukemia. N Engl J Med. 2017;376(9):836–847. doi: 10.1056/NEJMoa1609783
- Ghosh AK, Chen DH, Guha A, et al. CAR T cell therapy-related cardiovascular outcomes and management: systemic disease or direct cardiotoxicity? JACC CardioOncol. 2020;2(1):97–109. doi: 10.1016/j.jaccao.2020.02.011
- Lee RE, Lotze MT, Skibber JM, et al. Cardiorespiratory effects of immunotherapy with interleukin-2. J Clin Oncol. 1989;7(1):7–20. doi: 10.1200/JCO.1989.7.1.7
- Margolin KA, Rayner AA, Hawkins MJ, et al. Interleukin-2 and lymphokine-activated killer cell therapy of solid tumors: analysis of toxicity and management guidelines. J Clin Oncol. 1989;7(4):486–498. doi: 10.1200/JCO.1989.7.4.486
- Borgers JSW, van Schijndel AW, van Thienen JV, et al. Clinical presentation of cardiac symptoms following treatment with tumor-infiltrating lymphocytes: diagnostic challenges and lessons learned. ESMO Open. 2024;9(2):102383. doi: 10.1016/j.esmoop.2024.102383
- Farmakis D, Parissis J, Filippatos G. Insights into onco-cardiology: atrial fibrillation in cancer. J Am Coll Cardiol. 2014;63(10):945–953. doi: 10.1016/j.jacc.2013.11.026
- Imperatori A, Mariscalco G, Riganti G, et al. Atrial fibrillation after pulmonary lobectomy for lung cancer affects long-term survival in a prospective single-center study. J Cardiothorac Surg. 2012;7:4. doi: 10.1186/1749-8090-7-4
- D’Souza M, Carlson N, Fosbøl E, et al. CHA2DS2-VASc score and risk of thromboembolism and bleeding in patients with atrial fibrillation and recent cancer. Eur J Prev Cardiol. 2018;25(6):651–658. doi: 10.1177/2047487318759858
- Hu WS, Lin CL. Comparison of CHA2DS2-VASc, CHADS2 and HATCH scores for the prediction of new-onset atrial fibrillation in cancer patients: A nationwide cohort study of 760,339 study participants with competing risk analysis. Atherosclerosis. 2017;266:205–211. doi: 10.1016/j.atherosclerosis.2017.10.007
- Raposeiras-Roubin S, Abu-Assi E, Marchán A, et al. Validation of embolic and bleeding risk scores in patients with atrial fibrillation and cancer. Am J Cardiol. 2022;180:44–51. doi: 10.1016/j.amjcard.2022.06.044
- McCracken C, Condurache DG, Szabo L, et al. Predictive performance of cardiovascular risk scores in cancer survivors from the UK Biobank. JACC CardioOncol. 2024;6(4):575–588. doi: 10.1016/j.jaccao.2024.05.015
- Fanola CL, Ruff CT, Murphy SA, et al. Efficacy and safety of edoxaban in patients with active malignancy and atrial fibrillation: analysis of the ENGAGE AF – TIMI 48 trial. J Am Heart Assoc. 2018;7(16):e008987. doi: 10.1161/JAHA.118.008987
- Shabtaie SA, Tan NY, Ward RC, et al. Left atrial appendage occlusion in patients with atrial fibrillation and cancer. JACC CardioOncol. 2023;5(2):203–212. doi: 10.1016/j.jaccao.2022.10.016
- Brown JR, Moslehi J, Ewer MS, et al. Incidence of and risk factors for major haemorrhage in patients treated with ibrutinib: an integrated analysis. Br J Haematol. 2019;184(4):558–569. doi: 10.1111/bjh.15690
- Van Gelder IC, Groenveld HF, Crijns HJ, et al. Lenient versus strict rate control in patients with atrial fibrillation. N Engl J Med. 2010;362(15):1363–1373. doi: 10.1056/NEJMoa1001337
- Schnabel RB, Haeusler KG, Healey JS, et al. Searching for atrial fibrillation poststroke: a white paper of the AF-SCREEN International Collaboration. Circulation. 2019;140(22):1834–1850. doi: 10.1161/CIRCULATIONAHA.119.040267
- Tran KV, Filippaios A, Noorishirazi K, et al. False atrial fibrillation alerts from smartwatches are associated with decreased perceived physical well-being and confidence in chronic symptoms management. Cardiol Cardiovasc Med. 2023;7(2):97–107. doi: 10.26502/fccm.92920314
- Christopoulos G, Attia ZI, Achenbach SJ, et al. Artificial intelligence electrocardiography to predict atrial fibrillation in patients with chronic lymphocytic leukemia. JACC CardioOncol. 2024;6(2):251–263. doi: 10.1016/j.jaccao.2024.02.006
- Yagi R, Goto S, Himeno Y, et al. Artificial intelligence-enabled prediction of chemotherapy-induced cardiotoxicity from baseline electrocardiograms. Nat Commun. 2024;15(1):2536. doi: 10.1038/s41467-024-45733-x
补充文件
