Kinematic Dynamo Modeling and Its Peculiarities in Polar Latitudes
- Autores: Shatalov N.A.1, Chechetkin V.M.2, Shalimov S.L.3
-
Afiliações:
- National Research Nuclear University, Moscow Engineering Physics Institute
- Keldysh Institute of Applied Mathematics, Russian Academy of Sciences
- Schmidt Institute of Physics of the Earth, Russian Academy of Sciences
- Edição: Nº 2 (2023)
- Páginas: 3-14
- Seção: Articles
- URL: https://journals.eco-vector.com/0002-3337/article/view/658125
- DOI: https://doi.org/10.31857/S0002333723020114
- EDN: https://elibrary.ru/LIUETZ
- ID: 658125
Citar
Texto integral
Resumo
The results of calculations of the magnetic field structure in the kinematic approximation are presented, testifying to the consistency of the constructed numerical model with the structure of the flows of a conducting liquid: the instability of the convective process in a rotating spherical shell is reflected in the evolution of the magnetic field, manifesting itself in the pulsation regime of the field. It is shown that the features of the field evolution in the calculations are most clearly pronounced at high latitudes and have analogs in the behavior of the real geomagnetic field.
Palavras-chave
Sobre autores
N. Shatalov
National Research Nuclear University, Moscow Engineering Physics Institute
Autor responsável pela correspondência
Email: satalovnazar@gmail.com
115409 Russia , Moscow
V. Chechetkin
Keldysh Institute of Applied Mathematics, Russian Academy of Sciences
Autor responsável pela correspondência
Email: chechetv@gmail.com
125047 Russia, Moscow
S. Shalimov
Schmidt Institute of Physics of the Earth, Russian Academy of Sciences
Autor responsável pela correspondência
Email: pmsk7@mail.ru
123242 Russia, Moscow
Bibliografia
- Абакумов М.В., Чечеткин В.М., Шалимов С.Л. Математическое моделирование конвективных процессов в жидком ядре Земли и его следствия для интерпретации вариаций геомагнитного поля в полярных широтах // Физика Земли. 2018. № 3. С. 84–91.
- Галанин М.П., Лукин В.В. Разностная схема для решения двумерных задач идеальной МГД на неструктурированных сетках. Препринт ИПМ им. М.В.Келдыша. 2007. № 50. С. 1–29.
- Зельдович Я.Б., Рузмайкин А.А., Соколов Д.Д. Магнитные поля в астрофизике. Москва-Ижевск: НИЦ “Регулярная и хаотическая динамика”, Институт компьютерных исследований. 2006. 384 с.
- Шалимов С.Л. О роли магнитострофических волн в геодинамо // Физика Земли. 2017. № 3. С. 488–491.
- Bloxham J., Gubbins D. Thermal core– mantle interactions // Nature. 1987. V. 325. № 6104. P. 511–513.
- Glatzmaier G.A., Roberts P.H. A three-dimensional convective dynamo solution with rotating and finitely conducting inner core and mantle // Physics of the Earth and Planetary Interiors. 1995. V. 91. № 1. P. 63–75.
- Hulot G., Eymin C., Langlais B., Mandea M., Olsen N. Small-scale structure of the geodynamo inferred from Oersted and Magsat satellite data // Nature. 2002. V. 416. Is. 6881. P. 620–623.
- Johnson C.L., Constable C.G., Tauxe L. Mapping long-term changes in Earth’s magnetic field // Science. 2003. V. 300. P. 2044–2045.
- Kuang W., Bloxham J. An Earth-like numerical dynamo model // Nature. 1997. V. 389. № 6649. P. 371–374.
- Livermore P.W., Hollerbach R., Finlay C.C. An accelerating high-laltitude jet in Earth’s core // Nature Geoscience. 2016. https://doi.org/10.1038/NGEO2859
- Livermore P.W., Finlay C.C., Bayliff M. Recent north magnetic pole acceleration toward Siberia caused by flux lobe elongation // Nature Geoscience. 2020. V.13. Iss. 5. P. 387–391. https://doi.org/10.1038/s41561-020-0570-9
- Moffatt H.K. Magnetic field generation in electrically conducting fluids. Cambridge University Press. 1978.
- Olson P., Aurnou J. A polar vortex in the Earth’s core // Nature. 1999. V. 402. № 6758. P. 170–173.
- Roberts P.H., Glatzmaier G. A. Geodynamo theory and simulations // Rev. Mod. Phys. 2000. V. 72. P. 1081–1123.
Arquivos suplementares
