Kinematic Dynamo Modeling and Its Peculiarities in Polar Latitudes

Cover Page

Cite item

Full Text

Abstract

The results of calculations of the magnetic field structure in the kinematic approximation are presented, testifying to the consistency of the constructed numerical model with the structure of the flows of a conducting liquid: the instability of the convective process in a rotating spherical shell is reflected in the evolution of the magnetic field, manifesting itself in the pulsation regime of the field. It is shown that the features of the field evolution in the calculations are most clearly pronounced at high latitudes and have analogs in the behavior of the real geomagnetic field.

About the authors

N. A. Shatalov

National Research Nuclear University, Moscow Engineering Physics Institute

Author for correspondence.
Email: satalovnazar@gmail.com
115409 Russia , Moscow

V. M. Chechetkin

Keldysh Institute of Applied Mathematics, Russian Academy of Sciences

Author for correspondence.
Email: chechetv@gmail.com
125047 Russia, Moscow

S. L. Shalimov

Schmidt Institute of Physics of the Earth, Russian Academy of Sciences

Author for correspondence.
Email: pmsk7@mail.ru
123242 Russia, Moscow

References

  1. Абакумов М.В., Чечеткин В.М., Шалимов С.Л. Математическое моделирование конвективных процессов в жидком ядре Земли и его следствия для интерпретации вариаций геомагнитного поля в полярных широтах // Физика Земли. 2018. № 3. С. 84–91.
  2. Галанин М.П., Лукин В.В. Разностная схема для решения двумерных задач идеальной МГД на неструктурированных сетках. Препринт ИПМ им. М.В.Келдыша. 2007. № 50. С. 1–29.
  3. Зельдович Я.Б., Рузмайкин А.А., Соколов Д.Д. Магнитные поля в астрофизике. Москва-Ижевск: НИЦ “Регулярная и хаотическая динамика”, Институт компьютерных исследований. 2006. 384 с.
  4. Шалимов С.Л. О роли магнитострофических волн в геодинамо // Физика Земли. 2017. № 3. С. 488–491.
  5. Bloxham J., Gubbins D. Thermal core– mantle interactions // Nature. 1987. V. 325. № 6104. P. 511–513.
  6. Glatzmaier G.A., Roberts P.H. A three-dimensional convective dynamo solution with rotating and finitely conducting inner core and mantle // Physics of the Earth and Planetary Interiors. 1995. V. 91. № 1. P. 63–75.
  7. Hulot G., Eymin C., Langlais B., Mandea M., Olsen N. Small-scale structure of the geodynamo inferred from Oersted and Magsat satellite data // Nature. 2002. V. 416. Is. 6881. P. 620–623.
  8. Johnson C.L., Constable C.G., Tauxe L. Mapping long-term changes in Earth’s magnetic field // Science. 2003. V. 300. P. 2044–2045.
  9. Kuang W., Bloxham J. An Earth-like numerical dynamo model // Nature. 1997. V. 389. № 6649. P. 371–374.
  10. Livermore P.W., Hollerbach R., Finlay C.C. An accelerating high-laltitude jet in Earth’s core // Nature Geoscience. 2016. https://doi.org/10.1038/NGEO2859
  11. Livermore P.W., Finlay C.C., Bayliff M. Recent north magnetic pole acceleration toward Siberia caused by flux lobe elongation // Nature Geoscience. 2020. V.13. Iss. 5. P. 387–391. https://doi.org/10.1038/s41561-020-0570-9
  12. Moffatt H.K. Magnetic field generation in electrically conducting fluids. Cambridge University Press. 1978.
  13. Olson P., Aurnou J. A polar vortex in the Earth’s core // Nature. 1999. V. 402. № 6758. P. 170–173.
  14. Roberts P.H., Glatzmaier G. A. Geodynamo theory and simulations // Rev. Mod. Phys. 2000. V. 72. P. 1081–1123.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (1MB)
3.

Download (2MB)
4.

Download (1MB)
5.

Download (2MB)
6.

Download (2MB)

Copyright (c) 2023 Russian Academy of Sciences