Methods for assimilation of observational data in problems of the physics of the atmosphere and the ocean

Cover Page

Abstract


In this paper we review and analyze approaches to data assimilation in geophysical hydrodynamics problems, starting with the simplest successive schemes of assimilation and ending with modern variational methods. Special attention is paid to the the study of the problem of variational assimilation in the weak formulation and construction of covariance error matrices of the optimal solution. This is a new direction, to which the author made a contribution: an optimality system is formulated for the problem of variational data assimilation in a weak formulation and algorithms for deriving the covariance error matrices of the optimal solution are developed.


About the authors

V. P. Shutyaev

Marchuk Institute of Numerical Mathematics, RAS; Federal State Budget Scientific Institution "Marine Hydrophysical Institute, RAS"

Author for correspondence.
Email: victor.shutyaev@mail.ru

Russian Federation, 8, Gubkina ul., Moscow, 119333; 2, Kapitanskaya ul., Sevastopol, 299011

References

  1. Richardson L. Weather prediction by numerical process. Cambridge: Cambridge University Press, 1922.
  2. Charney J.G. The use of the primitive equations of motion in numerical prediction // Tellus. 1955. V. 7. P. 22–26.
  3. Phillips N.A. On the problem of initial data for the primitive equations // Tellus. 1960. V. 12. P. 121–126.
  4. Jazwinski A.H. Stochastic Processes and Filtering Theory. London: Academic Press, 1970. 376 p.
  5. Bucy R.S., Joseph P.D. Filtering for Stochastic Processes with Applications to Guidance (2nd ed.). Chelsea, New York, 1987. 217 p.
  6. Lions J.L. Contrôle optimal des systèmes gouvernés par des équations aux dérivées partielles. Paris: Dunod, 1968.
  7. Marchuk G.I. Adjoint Equations and Analysis of Complex Systems. Kluwer, Dordrecht, 1995.
  8. Gill P.E., Murray W., Wright M.H. Practical Optimization. London: Academic Press, 1987.
  9. Marchuk G.I., Agoshkov V.I., Shutyaev V.P. Adjoint Equations and Perturbation Algorithms in Nonlinear Problems. New York: CRC Press Inc., 1996.
  10. Bennett A.F. Inverse modeling of the ocean and atmosphere. Cambridge: Cambridge University Press, 2002.
  11. Daley R. Atmospheric Data Analysis. Cambridge: Cambridge University Press, 1991. 457p.
  12. Ghil M., Malanotte-Rizzoli P. Data assimilation in meteorology and oceanography. Adv. Geophys. 1991. 33. P. 141–266.
  13. Kalnay E. Atmospheric Modeling. Data Assimilation and Predictibility. Cambridge: Cambridge University Press, 2003.
  14. Panofsky H. Objective weather-map analysis. J. Appl. Meteor. 1949. V. 6. P. 386–392.
  15. Gilchrist B., Cressman G. An experiment in objective analysis // Tellus. 1954. V. 6. 309–318.
  16. Bergthorsson P., Doos B. Numerical weather map analysis // Tellus. 1955. P. 329–340.
  17. Cressman G. An operational objective analysis system // Mon. Wea. Rev. 1959. V. 87. P. 367–374.
  18. Hoke J., Anthes R.A. The initialization of numerical models by a dynamic initialization technique // Mon. Weather Rev. 1976. V. 104. P. 1551–1556.
  19. Verron J. Altimeter data assimilation into an ocean circulation model: sensitivity to orbital parameters, J. Geophys. Res. 1990. V. 95(C7) P. 443–459.
  20. Verron J., Holland W.R. Impact de données d’altimétrie satellitaire sur les simulations numériques des circulations générales océaniques aux latitudes moyennes // Ann. Geophys. 1989. V. 7. P. 31–46.
  21. Blayo E., Verron J., Molines J.-M. Assimilation of TOPEX/POSEIDON altimeter data into a circulation model of the North Atlantic // J. Geophys. Res. 1994. V. 99(C12). P. 24 691–24 705.
  22. Auroux D., Blum J. A nudging-based data assimilation method: the Back and Forth Nudging (BFN) algorithm // Nonlin. Processes Geophys. 2008. V. 15. P. 305–319.
  23. Гандин Л.C. Объективный анализ гидрометеорологических полей. Л.: Гидрометиздат, 1963.
  24. Lorenc A.C. A global three-dimensional multivariate statistical analysis scheme // Mon. Wea. Rev. 1981. V. 109. P. 701–721.
  25. McPherson R.D., Bergman K.H., Kistler R.E., Rasch G.E., Gordon D.S. The NMC operational global data assimilation system // Mon. Wea. Rev. 1979. V. 107. P. 1445–1461.
  26. Lyne W.H., Swinbank R., Birch N.T. A data assimilation experiment, with results showing the atmospheric circulation during the FGGE special observing periods. Q. J. R. Meteorol. Soc. 1982. V. 108. P. 575–594.
  27. Lorenc A.C. Analysis methods for numerical weather prediction. Q. J. R. Meteorol. Soc. 1986. V. 112. P. 1177–1194.
  28. Lorenc A.C., Bell R.S., Macpherson B. The Meteorological Office analysis correction data assimilation scheme // Q. J. R. Meteorol. Soc. 1991. V. 117. P. 59–89.
  29. Thiebaux H.J., Pedder M.A. Spatial Objective Analysis. London: Academic Press, 1987. 299 pp.
  30. Douville H., Viterbo P., Mahfouf J.-F., Beljaars A.C.M. Evaluation of the optimum interpolation and nudging techniques for soil moisture analysis using FIFE Data // Mon. Wea. Rev. 2000. V. 128. P. 1733– 1756.
  31. Багров А.Н., Цирульников М.Д. Оперативная схема объективного анализа Гидрометцентра России // 70 лет Гидрометцентру России. СПб.: Гидрометеоиздат, 1999. С. 59–69.
  32. Фролов А.В., Важник А.И., Свиренко П.И., Цветков В.И. Глобальная система усвоения данных наблюдений о состоянии атмосферы. СПб.: Гидрометеоиздат, 2000.
  33. Carton J.A., Hackert E.C. Applications of multi-variate statistical objective analysis to the circulation in the tropical Atlantic // Ocean. Dyn. Atm. Oceans. 1989. V. 13. P. 491–515.
  34. Derber J.C., Rosati A. A global ocean data assimilation system // J. Phys. Oceanogr. 1989. V. 19. P. 1333– 1347.
  35. Smith S., Cummings J.A., Rowley C. Validation Test Report for the Navy Coupled Ocean Data Assimilation 3D Variational Analysis (NCODA-VAR) System, Version 3.43. 2012.
  36. Evensen G. The Ensemble Kalman filter: Theoretical formulation and practical implementation // Ocean Dynamics. 2003. V. 53(4). P. 343–367.
  37. Sakov P., Sandery P.A. Comparison of EnOI and EnKF regional ocean reanalysis systems // Ocean Modelling. 2015. V. 89. P. 45–60.
  38. Кауркин М.Н., Ибраев Р.А., Беляев К.П. Усвоение данных наблюдений в модели динамики океана высокого пространственного разрешения с применением методов параллельного программирования // Океанология. 2016. Т. 56. № 6. С. 252–260.
  39. Kalman R.E. A new approach to linear filter and prediction theory, J. Basic. Eng.-T. ASCE. 1960. V. 82. P. 35–45.
  40. Kalman R.E., Bucy R.S. New results in linear filte ring and prediction theory. ASME J. Basic. Eng. 1961. V. 83D. P. 95–108.
  41. Ghil M., Cohn S.E., Dalcher A. Sequential estimation, data assimilation, and initialization. In: "The Interaction Between Objective Analysis and Initialization" (D. Williamson, ed.), Publ. Meteorol. 127 (Proc. 14th Stanstead Seminar). Montreal: McGill University, 1982. P. 83–97.
  42. Budgell N.P. Stochastic filtering of linear shallow water wave processes. SIAM, J. Sci. Stat. Comput. 1986. С. 34–42.
  43. Саркисян А.С. Моделирование динамики океана. СПб.: Гидрометеоиздат, 1991.
  44. Нелепо Б.А., Кныш В.В., Саркисян А.С., Тимченко И.Е. Изучение синоптической изменчивости океана на основе динамико-стохастического подхода // Докл. АН СССР. 1979. 246. № 4. С. 974–978.
  45. Коротаев Г.К., Еремеев В.Н. Введение в оперативную океанографию Черного моря. Севастополь: НПЦ ЭКОСИ-Гидрофизика, 2006. 382 с.
  46. Саркисян А.С., Демышев С.Г., Коротаев Г.К., Моисеенко В.А. Пример четырехмерного анализа данных наблюдений программы "Разрезы" для Ньюфаундлендской ЭАЗО. Итоги науки и техники. Атмосфера, океан, космос – программа "Разрезы", т. 6. М.: ВИНИТИ, 1986. С. 88–89.
  47. Кныш В.В., Коротаев Г.К., Мизюк А.И., Саркисян А.С. Усвоение гидрологических наблюдений для расчета течений в морях и океанах // Известия РАН. Физика атмосферы и океана. 2012. Т. 48. № 1. С. 67–85.
  48. Evensen G. Data Assimilation: The Ensemble Kalman Filter. Berlin: Springer, 2007.
  49. Klimova E. A suboptimal data assimilation algorithm based on the ensemble Kalman filter. Q. J. R. Meteorol. Soc. 2012. V. 138. P. 2079–2085.
  50. Shlyaeva A.V., Tolstykh M.A., Mizyak V.G., Rogutov V.S. Local ensemble transform Kalman filter data assimilation system for the global semi-Lagrangian atmospheric model // Russ. J. Num. An. & Math. Mod. 2013. V. 28. № 4. P. 419–441.
  51. Sasaki Y.K. An objective analysis based on the variational method // J. Meteor. Soc. Japan. 1958. V. 36. P. 77–88.
  52. Sasaki Y. Some basic formalisms in numerical variational analysis. Mon. Wea Rev. 1970. V. 98. P. 875–883.
  53. Provost C., Salmon R. A variational method for inverting hydrographic data. J. Mar. Res. 1986. V. 44. P. 1–34.
  54. Пененко В.В., Образцов Н.В. Вариационный метод для полей метеорологических элементов // Метеорология и гидрология. 1976. Т. 11. С. 1–11.
  55. Marchuk G.I., Penenko V.V. Application of optimization methods to the problem of mathematical simulation of atmospheric processes and environment, in G.I. Marchuk (ed.), Modelling and Optimization of Complex Systems: Proc. Of the IFIP-TC7 Working conf. New York: Springer, 1978. P. 240–252.
  56. Le Dimet F.-X., Talagrand O. Variational algorithms for analysis and assimilation of meteorological observations: Theoretical Aspects // Tellus. 1986. V. 38A. P. 97–110.
  57. Lewis J.M., Derber J.C. The use of adjoint equations to solve a variational adjustment problem with advective constraints // Tellus. 1985. V. 37A. P. 309–322.
  58. Courtier P., Talagrand O. Variational assimilation of meteorological observations with the adjoint vorticity equation. II. Numerical results. Q. J. R. Meteorol. Soc. 1987. V. 111. P. 1329–1347.
  59. Navon I.M. A review of variational and optimization methods in meteorology. In: Y.K. Sasaki (ed.) Varia tional Methods in Geosciences. New York: Elsevier, 1986. P. 29–34.
  60. Agoshkov V.I., Marchuk G.I. On solvability and numerical solution of data assimilation problems. Russ. J. Numer. Anal. Math. Modelling. 1993. V. 8. P. 1–16.
  61. Marchuk G.I., Zalesny V.B. A numerical technique for geophysical data assimilation problem using Pontryagin’s principle and splitting-up method. Russ. J. Numer. Anal. Math. Modelling. 1993. V. 8. P. 311–326.
  62. Marchuk G.I., Shutyaev V.P. Iteration methods for solving a data assimilation problem. Russ. J. Numer. Anal. Math. Modelling. 1994. V. 9. P. 265–279.
  63. Марчук Г.И., Шутяев В.П. Сопряженные уравнения и итерационные алгоритмы в задачах вариационного усвоения данных. Труды ИММ УрО РАН, 2011. Т. 17. № 2. С. 136–150.
  64. Agoshkov V.I., Parmuzin E.I., Zalesny V.B., Shutyaev V.P., Zakharova N.B., Gusev A.V. Variational assimilation of observation data in the mathematical model of the Baltic Sea dynamics // Russ. J. Numer. Anal. Math. Modelling. 2015. V. 30. № 4. P. 203–212.
  65. Agoshkov V.I., Assovskii M., Zalesny V.B., Zakharova N.B., Parmuzin E.I., Shutyaev V.P. Variational assimilation of observation data in the mathematical model of the Black Sea taking into account the tide-generating forces // Russ. J. Numer. Anal. Math. Modelling. 2015. V. 30. № 3. 129–142.
  66. Венцель М., Залесный В.Б. Усвоение данных в одномерной модели конвекции-диффузии тепла в океане. Изв. АН. Физика атмосферы и океана. 1996. Т. 32. № 5. С. 613–629.
  67. Шутяев В.П. Операторы управления и итерационные алгоритмы в задачах вариационного усвоения данных. М.: Наука, 2001.
  68. Агошков В.И., Пармузин Е.И., Шутяев В.П. Численный алгоритм вариационной ассимиляции данных наблюдений о температуре поверхности океана. ЖВМ и МФ. 2008. Т. 48. № 8. С. 1371–1391.
  69. Parrish D.F., Derber J.C. The National Meteorological Center’s spectral statistical interpolation analysis scheme. Mon. Wea. Rev. 1992. V. 120. P. 1747–1763.
  70. Courtier P., Andersson E., Heckley W., Pailleux J., Vasiljevic D., Hamrud M., Hollingsworth A., Rabier F., Fisher M. The ECMWF implementation of three-dimensional variational assimilation (3D-Var). I: Formulation. Quart. J. R. Meteorol. Soc. 1998. V. 124. P. 1783–1807.
  71. Courtier P., Thepaut J.N., Hollingsworth A. A strategy for operational implementation of 4D-Var, using an incremental approach. Quart. J. R. Meteorol. Soc. 1994. V. 120. P. 1389–1408.
  72. Ide K., Courtier P., Ghil M., Lorenc A.C. Unified notation for data assimilation: Operational, sequential and variational. J. Met. Soc. Japan. 1997. V. 75. P. 181–189.
  73. Mogensen K., Balmaseda M.A., Weaver A.T., Martin M., Vidard A. NEMOVAR: a variational data assimilation system for the NEMO ocean model, ECMWF Technical Memorandum. 2009. Number 120.
  74. Евтушенко Ю.Г., Засухина Е.С., Зубов В.И. О численном подходе к оптимизации решения задачи Бюргерса с помощью граничных условий. ЖВМ и МФ. 1997. Т. 2. № 12. С. 1449–1458.
  75. Ипатова В.М. Задача усвоения данных для модели общей циркуляции океана в квазигеострофическом приближении. Деп. в ВИНИТИ № 2333-В92. М., 1992.
  76. Агошков В.И., Ипатова В.М. Разрешимость задачи усвоения данных наблюдений в трехмерной модели динамики океана. Дифференциальные уравнения. 2007. Т. 43. № 8. С. 1064–1075.
  77. Агошков В.И., Ипатова В.М. Теоремы существования для трехмерной модели динамики океана и задачи ассимиляции данных // ДАН. 2007. Т. 412. № 2. С. 151–153.
  78. Sirkes Z., Tziperman E. Finite difference of adjoint or adjoint of finite difference? Mon. Weather Rev. 1997. V. 125. P. 3373–3378.
  79. Parmuzin E.I., Shutyaev V.P., Diansky N.A. Numerical solution of a variational data assimilation problem for a 3D ocean thermohydrodynamics model with a nonlinear vertical heat exchange // Russ. J. Numer. Anal. Math. Modelling. 2007. V. 22 (2). P. 177–198.
  80. Le Dimet F.-X., Charpentier I. Methodes de second order en assimilation de donnees. Equations aux Derivees Partielles et Applications (Articles dediees a Jacques-Louis Lions). Paris: Elsevier, 1998. P. 623–639.
  81. Lawless A.S., Nichols N.K., Balloid S.P. A comparison of two methods for developing the linearization of a shallow-water model. Q. J. R. M. S. 2003. V. 129. P. 1237–1254.
  82. Chao W.C., Chang L.-P. Development of a four-dimensional variational analysis system using the adjoint method at GLA. Part I: Dynamics. Mon. Weather Rev. 1992. V. 120. P. 1661–1672.
  83. Giering R., Kaminski T. Recipes for adjoint code constructions. ACM Trans. Math. Software. 1998. V. 24. P. 437–474.
  84. Giles M.B., Pierce N.A. An introduction to the adjoint approach to design. Flow, Turbul. Combust. 2000. V. 65. P. 393–415.
  85. Le Dimet F.-X., Shutyaev V.P. On deterministic error analysis in variational data assimilation // Nonlinear Processes in Geophysics. 2005. V. 12. P. 481–490.
  86. Gejadze I., Le Dimet F.-X., Shutyaev V. On analysis error covariances in variational data assimilation. SIAM Journal on Scientific Computing. 2008. V. 30. № 4. P. 1847–1874.
  87. Shutyaev V.P., Parmuzin E.I. Some algorithms for studying solution sensitivity in the problem of variational assimilation of observation data for a model of ocean thermodynamics // Russ. J. Numer. Anal. Math. Modelling. 2009. V. 24. № 2. P. 145–160.
  88. Агошков В.И., Пармузин Е.И., Шутяев В.П. Ассимиляция данных наблюдений в задаче циркуляции Черного моря и анализ чувствительности ее решения // Изв. РАН. Физика атмосферы и океана. 2013. Т. 49. № 6. С. 643–654.
  89. Шутяев В.П., Ле Диме Ф., Агошков В.И., Пармузин Е.И. Чувствительность функционалов задач вариационного усвоения данных наблюдений // Изв. РАН. Физика атмосферы и океана. 2015. Т. 51. № 3. С. 392–400.
  90. Шутяев В.П., Пармузин Е.И. Исследование чувствительности оптимального решения задачи вариационного усвоения данных для модели термодинамики Балтийского моря // Метеорология и гидрология. 2015. № 6. С. 88–97.
  91. Le Dimet F.-X., Shutyaev V., Parmuzin E.I. Sensitivity of functionals with respect to observations in variational data assimilation // Russ. J. Numer. Anal. Math. Modelling. 2016. V. 31. № 2. P. 81–91.
  92. Залесный В.Б., Агошков В.И., Шутяев В.П., Ле Диме Ф., Ивченко В.О. Задачи численного моделирования гидродинамики океана с вариационной ассимиляцией данных наблюдений // Изв. РАН. Физика атмосферы и океана. 2016. Т. 52. № 4. С. 488–500.
  93. Lorenc A. The potential of the ensemble Kalman filter for NWP – a comparison with 4D-Var, Q. J. Roy. Meteorol. Soc. 2003. V. 129. P. 3183–3203.
  94. Kalnay E., Li H., Miyoshi T., Yang S.-C., Ballabrera-Poy J. 4D-Var or Ensemble Kalman Filter? // Tellus. 2007. V. A 59. P. 758–773.
  95. Caya A., Sun J., Snyder C. A Comparison between the 4DVAR and the ensemble Kalman filter techniques for radar data assimilation. Monthly Weather Review. 2005. V. 133(11). P. 3081–3094.
  96. Gustafsson N. Discussion on "4D-Var or EnKF" // Tellus A. 2007. V. 59. P. 774–777.
  97. Fertig E.J., Harlim J., Hunt B.R. A Comparative Study of 4D-VAR and a 4D Ensemble Kalman Filter: Perfect Model Simulations with Lorenz-96 // Tellus. 2007. V. 59A. P. 96–100.
  98. Buehner M., Houtekamer P., Charette C., Mitchell H., He B. Intercomparison of variational data assimilation and the ensemble Kalman filter for global deterministic NWP. Part I: Description and single-observation experiments, Mon. Weather Rev. 2010. V. 138. P. 1550–1566.
  99. Fairbairn D., Pring S.R., Lorenc A.C., Roulstone I. A comparison of 4DVar with ensemble data assimilation methods. Q. J. Roy. Meteor. Soc. 2014. V. 140. P. 281–294.
  100. Tian X., Xie J., Dai A. An ensemble-based explicit 4D-Var assimilation method // Journal of Geophysical Research. 2008. V. 113 (D21124).
  101. Zhang F.Q., Zhang M., Hansen J.A. Coupling ensemble Kalman filter with four dimensional variational data assimilation // Adv. Atmos. Sci. 2009. V. 26 (1). P. 1–8.
  102. Clayton A.M., Lorenc A.C., Barker D.M. Operational implementation of a hybrid ensemble/4D-Var global data assimilation at the Met Office // Q. J. R. Meteorol. Soc. 2013. V. 139. P. 1445–1461.
  103. Gustafsson N., Bojarova J., Vignes O. A hybrid variational ensemble data assimilation for the HIgh Resolution Limited Area Model (HIRLAM), Nonlin. Processes Geophys. 2014. V. 21. P. 303–323.
  104. Bonavita M., Hólm E., Isaksen L., Fisher M. The evolution of the ECMWF hybrid data assimilation system // Q. J. R. Meteorol. Soc. 2016. V. 142. P. 287–303.
  105. Liu C., Xiao Q., Wang B. An ensemble-based four- dimensional variational data assimilation scheme. Part I: Technical formulation and prelimi nary test // Mon. Weather Rev. 2008. V. 136. P. 3363–3373.
  106. Liu C., Xiao Q., Wang B. An ensemble-based four- dimensional variational data assimilation scheme. Part II: Observing system simulation experiments with advanced research WRF (ARW) // Mon. Weather Rev. 2009. V. 137. P. 1687–1704.
  107. Liu C., Xiao Q. An ensemble-based four-dimensional variational data assimilation scheme. Part III: Antarctic applications with advanced WRF using real data // Mon. Weather Rev. 2013. V. 141. P. 2721–2739.
  108. Desroziers G., Camino J.-T., Berre L. 4DEnVar: link with 4D state formulation of variational assimilation and different possible implementations // Q. J. Roy. Meteorol. Soc. 2014. V. 140. P. 2097–2110.
  109. Gustafsson N., Bojarova J. Four-dimensional ensemble variational (4D-En-Var) data assimilation for the HIgh Resolution Limited Area Model (HIRLAM). Nonlin. Processes Geophys. 2014. V. 21. P. 745–762.
  110. Asch M., Bocquet M., Nodet M. Data Assimilation: Methods, Algorithms, and Applications. Philadelphia, SIAM, 2016.
  111. Gejadze I., Le Dimet F.-X., Shutyaev V.P. On optimal solution error covariances in variational data assimilation problems // J. Comp. Phys. (2010). V. 229. P. 2159–2178.
  112. Gejadze I., Shutyaev V.P., Le Dimet F.-X. Analysis error covariance versus posterior covariance in variational data assimilation // Q. J. R. Meteorol. Soc. 2013. V. 139. P. 1826–1841.
  113. Gejadze I.Yu., Shutyaev V.P. On gauss-verifiability of optimal solutions in variational data assimilation problems with nonlinear dynamics // J. Comput. Phys. 2015. V. 280. P. 439–456.
  114. Liu D.C., Nocedal J. On the limited memory BFGS method for large scale minimization // Math. Program. 1989. V. 45. P. 503–528.
  115. Veerse F., Auroux D., Fisher M. Limited-memory BFGS diagonal pre-conditioners for a data assimilation problem in meterology // Optim. Eng. 2000. V. 1. P. 323–339.
  116. Trémolet Y. Model-error estimation in 4D-Var // Q. J. R. Meteorol. Soc. 2007. V. 133(626). P. 1267–1280.
  117. Carrassi A., Vannitsem S. Accounting for model error in variational data assimilation: a deterministic approach // Monthly Weather Review. 2010. V. 138. P. 875–883.
  118. Furbish D., Hussaini M.Y., Le Dimet F.-X., et al. On discretization error and its control in variational data assimilation // Tellus. 2008. V. 60A. P. 979–991.
  119. Griffith A.K., Nichols N.K. Adjoint methods in data assimilation for estimating model error // Flow, Turbul. Combust. 2000. V. 65(3/4). P. 469–488.
  120. Vidard A., Piacentini A., Le Dimet F.-X. Variational data analysis with control of the forecast bias // Tellus, 2004. V. A56. P. 1–12.
  121. Akella S., Navon I. Different approaches to model error formulation in 4D-Var: a study with high resolution advection schemes // Tellus. 2009. V. 61A. P. 112–128.
  122. Пененко В.В. Вариационные методы усвоения данных и обратные задачи для изучения атмо cферы, океана и окружающей среды // Сиб. журн. вычисл. математики. 2009. Т. 12. С. 421–434.
  123. Tsyrulnikov M.D. 2005. Stochastic modelling of model errors: a simulation study. Q. J. R. Meteorol. Soc. 2005. V. 131. P. 3345–3371.
  124. Gejadze I., Oubanas H., Shutyaev V. Implicit treatment of model error using inflated observation-error covariance // Q. J. R. Meteorol. Soc. 2017. V. 143. P. 2496–2508.
  125. Shutyaev V., Gejadze I., Vidard A., Le Dimet F.-X. Optimal solution error quantification in variational data assimilation involving imperfect models // Int. J. Numer. Meth. Fluids. 2017. V. 83. № 3. P. 276–290.
  126. Stuart A. M. Inverse problems: a Bayesian perspective // Acta Numerica. 2010. V. 9. P. 451–559.

Statistics

Views

Abstract - 180

PDF (Russian) - 122

Cited-By


PlumX

Refbacks

  • There are currently no refbacks.

Copyright (c) 2019 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies