Numerical simulation of ice cover of saline lakes

Cover Page

Cite item

Full Text

Abstract

A new version of 1D thermodynamic and hydrodynamic model LAKE 2.1 is presented. The model is supplemented with description of dynamics and vertical distribution of salinity in ice layer. Simulation results are compared to in situ and satellite data on water temperature and ice cover at Lake Uvs (Mongolia) from 2000 to 2015. We demonstrate that underestimation of mixed-layer depth by the model with standard k–ε closure during summer and autumn leads to significant shift of ice-on to earlier dates. If the effects of water salinity are neglected in the model, ice cover establishes 16–17 before the observed dates. This error is removed, if influence of salinity on water density and freezing point is included, still assuming the fresh ice. However, in this case, LAKE model underestimates the maximal winter ice thickness on average by 0.2 m. In turn, this discrepancy decreases an order of magnitude if dynamics and vertical distribution of salinity in ice are reproduced. Such an effect does not take place when using constant salinity value in ice.

About the authors

V. M. Stepanenko

Lomonosov Moscow State University

Author for correspondence.
Email: stepanen@srcc.msu.ru
Russian Federation, Leninskie gory, 1–4, Moscow, 119234

I. A. Repina

Lomonosov Moscow State University; Obukhov Institute of Atmospheric Physics, RAS

Email: stepanen@srcc.msu.ru
Russian Federation, Leninskie gory, 1–4, Moscow, 119234; Pyzyevsky per., 3, Moscow, 119017

G. Ganbat

Research Institute of Meteorology, Hydrology and Environment

Email: stepanen@srcc.msu.ru
Mongolia, Ulaanbaatar

G. Davaa

Research Institute of Meteorology, Hydrology and Environment

Email: stepanen@srcc.msu.ru
Mongolia, Ulaanbaatar

References

  1. Бреховских В.Ф. Гидрофизические факторы формирования кислородного режима водоемов / Отв. ред.: В.К. Дебольский, А.Г. Кочарян. М.: Наука, 1988. 168 с.
  2. Greene S., Walter Anthony K.M., Archer D., Sepulveda-Jauregui A., Martinez- Cruz K. Modeling the impediment of methane ebullition bubbles by seasonal lake ice // Biogeosciences. 2014. V. 11(23). P. 6791–6811.
  3. Hodgkins G.A., James Ii I.C., Huntington T.G. Historical changes in lake ice-out dates as indicators of climate change in New England, 1850–2000 // Int. J. Climatol. 2002. V. 22. P. 1819–1827.
  4. Latifovic R., Pouliot D. Analysis of climate change impacts on lake ice phenology in Canada using the historical satellite data record // Remote Sensing of Environment. 2007. V. 106(4). P. 492–507.
  5. Oveisy A., Boegman L. One-dimensional simulation of lake and ice dynamics during winter // Journal of Limnology. 2014. V. 73(3). doi: 10.4081/jlimnol.2014.903
  6. Mironov D.V. Parameterization of lakes in numerical weather prediction. Description of a lake model. Technical report, Deutscher Wetterdienst, 2008.
  7. Fang X., Stefan H.G. Long-term lake water temperature and ice cover simulations/measurements // Cold Reg. Sci. Technol. 1996. V. 24(3). P. 289–304.
  8. Leppäranta M. Modelling the Formation and Decay of Lake Ice // In The Impact of Climate Change on European Lakes. Springer Netherlands, Dordrecht: 2010. P. 63–83.
  9. Brown L.C., Duguay C.R. Modelling Lake Ice Phenology with an Examination of Satellite-Detected Subgrid Cell Variability // Advances in Meteorology. 2012. V. 2012. P. 1–19.
  10. Воеводин А.Ф., Гранкина Т.Б. Численное моделирование динамики роста ледяного покрова в пресных и солоноватых водах // Математические заметки СВФУ. 2012. С. 147–158.
  11. Назинцев Ю.Л., Панов В.В. Фазовый состав и теплофизические характеристики морского льда. С.-П.: Гидрометеоиздат, 2000. 84 с.
  12. Яковлев Н.Г. Совместная модель общей циркуляции вод и эволюции морского льда в Северном Ледовитом океане // Изв. РАН. Физика атмосферы и океана. 2003. V. 39(3). P. 394–409.
  13. Griewank P.J., Notz D. A 1-D modelling study of Arctic sea-ice salinity // The Cryosphere. 2015. V. 9(1). P. 305–329.
  14. Степаненко В.М., Лыкосов В.Н. Численное моделирование процессов тепловлагопереноса в системе водоем–грунт // Метеорология и гидрология. 2005. № 3. С. 95–104.
  15. Stepanenko V., Mammarella I., Ojala A., Miettinen H., Lykosov V., Vesala T. LAKE 2.0: A model for temperature, methane, carbon dioxide and oxygen dynamics in lakes // Geosci. Model Dev. 2016. V. 9(5). C. 1977–2006.
  16. Степаненко В.М., Мачульская Е.Е., Глаголев М.В., Лыкосов В. Н. Моделирование эмиссии метана из озер зоны вечной мерзлоты // Изв. РАН. Физика атмосферы и океана. 2011. Т. 47. № 2. С. 275–288.
  17. Stepanenko V.M., Martynov A., Goyette S., Fang X., Perroud M., Mironov D. First steps of a Lake Model Intercomparison Project // Boreal Environ. Res. 2010. V. 15. P. 191–202.
  18. Stepanenko V.M., Martynov A., Jöhnk K.D., Subin Z.M., Perroud M., Fang X., Beyrich F., Mironov D., Goyette S. A one-dimensional model intercomparison study of thermal regime of a shallow, turbid midlatitude lake // Geosci. Model Dev. 2013. V. 6(4). P. 1337–1352.
  19. Stepanenko V., Jöhnk K.D., Machulskaya E., Perroud M., Subin Z., Nordbo A., Mammarella I., Mironov D. Simulation of surface energy fluxes and stratification of a small boreal lake by a set of one-dimensional models // Tellus, Series A: Dynamic Meteorology and Oceanography. 2014. V. 66(1). P. 21389.
  20. Thiery W., Stepanenko V., Fang X., Jöhnk K., Li Z., Martynov A., Perroud M., Subin Z., Darchambeau F., Mironov D., van Lipzig N. LakeMIP Kivu: evaluating the representation of a large, deep tropical lake by a set of one-dimensional lake models // Tellus, Series A: Dynamic Meteorology and Oceanography. 2014. V. 66(1). P. 21390.
  21. Богородский П.В., Пнюшков А.В. Простая модель кристаллизации морской воды в спектре температур // Океанология. 2007. Т. 47(4). С. 539–545.
  22. Андреев О.М., Иванов Б.В. Параметризация вертикального распределения солености однолетнего морского льда для задач термодинамического моделирования в Арктике. Проблемы Арктики и Антарктики. 2007. Т. 75. С. 99–105.
  23. Зубов Н.Н. Льды Арктики. М: Изд. Главсевморпути, 1945. 360 с.
  24. Paul M. Limnological aspects of the Uvs Nuur Basin in northwest Mongolia. PhD thesis, Technischen Universitaet Dresden, 2012. 201 p.
  25. Horn W., Paul M., Uhlmann D., Dulmaa A., Davaa G., Tseveendorj N., editors. The recent surface and subsurface waters in the endorheic Uvs Nuur Basin (Northwest Mongolia). Hirzel S. Verlag, 2016. 32 p.
  26. Poole H.H., Atkins W.R.G. Photo-electric Measurements of Submarine Illumination throughout the Year // J. Mar. Biol. Assoc. U. K. 1929. V. 16(01). P. 297.
  27. Perovich D.K. The Optical Properties of Sea Ice. US Army Corps of Engineers, 1996. Tech. report 96-1.
  28. Berrisford P., Dee D.P., Poli P., Brugge R., Fielding K., Fuentes M., Krallberg P.W., Kobayashi S., Uppala S., Simmons A. The ERA-Interim archive Version 2.0. Shinfield Park, Reading, 2011.
  29. MacCallum S.N., Merchant C.J. Surface water temperature observations of large lakes by optimal estimation // Can. J. Remote Sens. 2012. V. 38(1). P. 25–45.
  30. Hosoda K., Murakami H., Sakaida F., Kawamura H. Algorithm and validation of sea surface temperature observation using MODIS sensors aboard terra and aqua in the western North Pacific // J. Oceanogr. 2007. V. 63(2). P. 267–280.
  31. Sharma S., Gray D. K., Read J.S., O’Reilly C.M., Schneider P., Qudrat A., Gries C. Stefanoff S., Hampton S.E., Hook S., Lenters J.D., Livingstone D.M., McIntyre P.B., Adrian R., Allan M.G., Anneville O., Arvola L., Austin J., Bailey J., Baron J.S., Brookes J., Chen Y., Daly R., Dokulil M., Dong B., Ewing K., de Eyto E., Hamilton D., Havens K., Haydon S., Hetzenauer H., Heneberry J., Hetherington A.L., Higgins S.N., Hixson E., Izmest’eva L.R., Jones B.M., Kangur K., Kasprzak P., Koster O., Kraemer B.M., Kumagai M., Kuusisto E., Leshkevich G., May L., MacIntyre S., Muller-Navarra D., Naumenko M., Noges P., Noges T., Niederhauser P., North R.P., Paterson A.M., Plisnier P.-D., Rigosi A., Rimmer A., Rogora M., Rudstam L., Rusak J.A., Salmaso N., Samal N.R., Schindler D.E., Schladow G., Schmidt S.R., Schultz T., Silow E.A., Straile D., Teubner K., Verburg P., Voutilainen A., Watkinson A., Weyhenmeyer G.A., Williamson C.E., Woo K.H. A global database of lake surface temperatures collected by in situ and satellite methods from 1985–2009 // Sci. Data. 2015. V. 2. P. 150008.
  32. Хвостов И.В., Романов А.Н., Тихонов В.В., Шарков Е.А. Некоторые особенности микроволнового радиотеплового излучения пресноводных водоемов с ледовым покровом // Современные проблемы дистанционного зондирования Земли из космоса. 2017. T. 14(4). P. 149–154.
  33. Gardner A.S., Sharp M.J. A review of snow and ice albedo and the development of a new physically based broadband albedo parameterization // J. Geophys. Res. 2010. V. 115(F1). P. F01009.
  34. Чубаренко И.П. Горизонтальная конвекция над подводными склонами. Терра-Балтика, Калининград, 2010. 282 с.
  35. Arai T. Climatic and geomorphological influences on lake temperature // SIL Proceedings, 1922–2010. 1981. V. 21(1). P. 130–134.
  36. Patalas K. Mid-summer mixing depths of lakes of different latitudes // SIL Proceedings, 1922–2010. V. 22(1). P. 97–102.
  37. Gaudard A., Schwefel R., Vinna L. R., Schmid M., Wuest A., Bouffard D. Optimizing the parameterization of deep mixing and internal seiches in one-dimensional hydrodynamic models: a case study with Simstrat v1.3 // Geosci. Model Dev. 2017. V. 10(9). P. 3411–3423.
  38. Baumert H.Z., Peters H. Turbulence closure: turbulence, waves and the wave- turbulence transition – Part 1: Vanishing mean shear // Ocean Sci. 2009. V. 5. P. 47–58.
  39. Hondzo M., Stefan H.G. Lake Water Temperature Simulation Model // Journal of Hydraulic Engineering. 1993. V. 119(11). P. 1251–1273.
  40. Kirillin G., Terzhevik A. Thermal instability in freshwater lakes under ice: Effect of salt gradients or solar radiation? // Cold Reg. Sci. Technol. 2011. V. 65(2). P. 184–190.
  41. Stepanenko V., Repina I.A., Artamonov A., Gorin S., Lykosov V.N., Kulyamin D. Mid-depth temperature maximum in an estuarine lake // Environmental Research Letters. 2018. V. 13(3). P. 035006.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies