The search for ice 0 in the Earth's atmosphere

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Рұқсат ақылы немесе тек жазылушылар үшін

Аннотация

In the last decade, it has been shown that in most cases atmospheric ice consists of a mixture of ices Ih and Ic, it is called ice with stacking disorder or stacking disordered ice Isd. In addition, it became known about the existence of another crystalline modification of ice, called ice 0. Ice 0 is a transitional form from deeply supercooled water to ices Ih and Ic, which form at temperatures below ‒23°C (at low pressures). For this reason, the question arose about the possibility of forming ice 0 in the structure of ice Isd. To clarify the issue, laboratory experiments were carried out to obtain layers of ice 0 on the surface of ice Ih, as well as dielectric measurements of the material of atmospheric ice from fallen hail. The results obtained confirmed the possibility of forming ice 0 in the structure of stacking disordered ice Isd. A special property of such a structure is the appearance of contact layers with high conductivity, which significantly changes the electrophysical characteristics of ice particles. For example, in particles of small sizes, resonances of plasmon oscillations arise, which affect the transfer of electromagnetic radiation in cloud formations. The study of electromagnetic properties of small ice particles containing ice 0, and their features in various areas of the atmosphere will allow solving a number of important tasks. These include refining the radiation balance of the Earth’s surface, thunderstorm phenomena, radiation transfer in cloud formations, and physicochemical processes in aerosols and snow covers.

Негізгі сөздер

Толық мәтін

Рұқсат жабық

Авторлар туралы

G. Bordonskiy

Institute of Natural Resources, Ecology and Cryology, Siberian Branch of the Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: lgc255@mail.ru
Ресей, Nedorezova st., 16a, Chita, 672002

V. Kazantsev

Institute of Natural Resources, Ecology and Cryology, Siberian Branch of the Russian Academy of Sciences

Email: lgc255@mail.ru
Ресей, Nedorezova st., 16a, Chita, 672002

A. Kozlov

Institute of Natural Resources, Ecology and Cryology, Siberian Branch of the Russian Academy of Sciences

Email: lgc255@mail.ru
Ресей, Nedorezova st., 16a, Chita, 672002

Әдебиет тізімі

  1. Бордонский Г.С., Гурулев А.А., Орлов А.О. Пропускание электромагнитного излучения видимого диапазона тонким слоем льда 0, конденсированного на диэлектрическую подложку // Письма в Журнал экспериментальной и теоретической физики. 2020а. Т. 111. № 5. С. 311–315.
  2. Бордонский Г.С., Крылов С.Д., Гурулев А.А. Лёд 0 в природной среде. Экспериментальные данные и предполагаемые области его существования // Лёд и снег. 2020б. Т. 60. № 2. С. 263–273.
  3. Бордонский Г.С., Гурулев А.А., Орлов А.О. Диэлектрическая проницаемость глубоко переохлажденной воды по данным измерений на частотах 7.6 и 9.7 ГГц // Радиотехника и электроника. 2022. Т. 67. № 3. С. 259–267.
  4. Борен К., Хафмен Д. Поглощение и рассеяние света малыми частицам. М.: Мир, 1986. 664 с.
  5. Ефимов В.Б., Изотов А.Н., Левченко А.А., Мексов-Деглин Л.П., Хасанов С.С. Структурные превращения в ледяных образованиях при низких температурах и малых давлениях // Письма в Журнал экспериментальной и теоретической физики. 2011. Т. 94. № 8. С. 662–667.
  6. Завитаев Э.В., Юшканов А.А. Влияние характера отражения электронов на электромагнитные свойства неоднородной сферической частицы // Журнал экспериментальной и теоретической физики. 2004. Т. 126. Вып. 1(7). С. 203–214.
  7. Котляков В.М., Алексеев В.Р., Волков Н.В., Втюрин Б.И., Гросвальд М.Г., Кренке А.Н., Лосев К.С., Цуриков В.Л., Дюнин А.К., Втюрина Е.А., Канаев Л.А., Перов В.Ф., Донченко Р.В. Гляциологический словарь. Л.: Гидромеоиздат, 1984. 527 с.
  8. Новотный Л., Хехт Б. Основы нанооптики. М.: Физматлит, 2009. 481 с.
  9. Ролдугин В.К., Черняков С.М., Ролдугин А.В., Оглоблина О.Ф. Вариации полярных летних мезосферных отражений во время появления неоднородностей серебристых облаков // Геомагнетизм и аэрономия. 2018. Т. 58. № 3. С. 1–8.
  10. Харлак Д., Галенко П., Холланд-Мориц Д. Метастабильные материалы из переохлажденных расплавов. М.-Ижевск: R&C Dynamics, 2010. 482 с.
  11. Шредингер Э. Что такое жизнь? Физический аспект живой клетки. М.–Ижевск: НИЦ «РХД», 2002. 92 с.
  12. Шувалов Л.А., Урусовская А.А., Желудев И.С., Залееский А.В., Семилетов С.А., Гречушников Б.Н., Чистяков И.Г., Пикин С.А. Современная кристаллография: Т. 4. Физические свойства кристаллов. М.: Наука, 1981. 495 с.
  13. Allen J.T., Giammanco I.M., Kumjian M.R., Punge H.J., Zhang Q., Groenemeijer P., Kunz M., Ortega K. Understanding hail in the Earth system // Reviews of Geophysics. 2020. V. 58. P. e2019RG000665.
  14. Arakawa M., Kagi H., Fernandez-Baca J.A., Chakoumakos B.C, Fukazawa H. The existence of memory effect on hydrogen ordering in ice: The effect makes ice attractive // Geophysical Research Letters. 2011. V. 38. № 16. P. L16101 (1-49).
  15. Bordonskiy G.S., Gurulev A.A., Orlov A.O. The Possibility of Observing Noctilucent Clouds in Microwave Radiometric Measurements // Proceedings of SPIE, 25th International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics. 2019. V. 11208. P. 1120818 (1–5).
  16. Jazdzewska M., Domin K., Sliwinska-Bartowiak M., Beskrovnyi A.I., Chudoba D.M., Nagorna T.V., Ludzik K., Neov D.S. Structural properties of ice in confinement // Journal of Molecular Liquids. 2019. V. 283. P.167–173.
  17. Kokhanovsky A.A. Microphysical and optical properties of noctilucent clouds // Earth-Science Reviews. 2005. V. 71. P. 127–146.
  18. Kilaj A., Gao H., Rosch D., Rivero U., Kupper J., Willitsch S. Observation of different reactivities of para- and ortho-water towards cold diazenylium ions // Nature Communications. 2018. V. 9. P. 2096(1–24).
  19. Korobeynikov S.M., Royak M.E., Melekhov A.V. Agoris D.P., Pyrgioti E., Soloveitchik Yu.G. Surface conductivity at the interface between ceramics and transformer oil // Journal of Physics D: Applied Physics. 2005. V. 38. № 6. P. 915–921.
  20. Leoni F., Russo J. Nonclassical nucleation pathways in stacking-disordered crystals // Physical Review X. 2021. V. 11. № 3. P. 031006 (1–21).
  21. Leoni F., Shi R., Tanaka H., Russo J. Crystalline clusters in mW water: Stability, growth, and grain boundaries // J. Chem. Phys. 2019. V. 151. Iss. 4. P. 044505.
  22. Libbrecht K.G. The physics of snow crystals // Reports on Progress in Physics. 2005. V. 68. P. 855–895.
  23. Murray B.J., Salzmann C.G., Heymsfield A.J., Dobbie S., Neely R.R., Cox C.J. Trigonal ice crystals in Earth’s atmosphere // Bulletin of the American Meteorological Society. 2014. V. 96. № 9. P. 1519–1531.
  24. Quigley D., Alfe D., Slater B. On the stability of ice 0, ice i, and Ih // Jorn. Chem. Phys. 2014. V. 141. № 16. P. 161102 (1–5).
  25. Russo J., Romano F., Tanaka H. New metastable form of ice and its role in the homogeneous crystallization of water // Nature materials. 2014. V 13. P. 733–793.
  26. Salzmann C.G. Advances in the experimental exploration of water’s phase diagram // The Journal of Chemical Physics. 2019 V. 150. № 6. P. 060901 (1–27).
  27. Slater B., Quigley D. Zeroing in on ice // Nature Mater. 2014. V. 13. P. 670–671.
  28. Sliwinska-Bartkowiak M., Jazdzewska M., Huang L.L., Gubbins K.E. Melting behavior of water in cylindrical pores: carbon nanotubes and silica glasses // Phys. Chem. Chem. Phys. 2008. V. 10. P. 4909–4919.
  29. Varn D.P., Crutchfield J.P. What did Erwin mean? The physics of information from the materials genomics of aperiodic crystals and water to molecular information catalysts and life // Philosophical transactions. Series A, Mathematical, physical, and engineering sciences. 2016. V. 374. P. 20150067 (1–22).

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. The scheme of measuring the passage of radiation in the visible range through an ice plate during condensation of water vapor on it. 1 — halogen lamp, 2 — radiation modulator disk, 3 — ice plate Ih, 4 — cooled chamber made of polyethylene film, 5 — photodiode with an amplifier and a synchronous detector, 6 — Dewar flask with liquid nitrogen (N2), 7 — data collection and accumulation system, "T" — sample surface temperature sensor, I — heater current for feeding cold nitrogen vapor into the chamber, 8 — evaporator resistor.

Жүктеу (13KB)
3. Fig. 2. Dependence of the intensity of visible radiation transmitted through an ice plate Ih on the temperature during the deposition of an ice film 0. 1 — start of measurements; arrows indicate the direction of temperature change over time. 2 — end of measurements. Fig. 3. The scheme of the experiment on studying the material of ice hail in a resonator for determining the formation of ice 0 in the composition of stacked ice. 1 — climate chamber, 2 — resonator, 3 — vector analyzer, "T" — temperature sensor.

Жүктеу (14KB)
4. Fig. 3. Scheme of the experiment for studying the ice hail material in a resonator for determining the formation of ice 0 in the composition of stacked ice. 1 — climatic chamber, 2 — resonator, 3 — vector analyzer, “T” — temperature sensor.

Жүктеу (16KB)
5. Fig. 4. Dependences of ε׳ (a) and ε״ (b) of hail material on temperature during its cyclic change. Measurement after 18 hours of storing hail in a refrigerator. Arrows show the direction of temperature change.

Жүктеу (38KB)
6. Fig. 5. a) Dependence of ε׳ on temperature, b) dependence of ε״ on temperature. Measurements after three days of storing a hail sample in a resonator. Arrows show the direction of temperature change.

Жүктеу (33KB)

© Russian Academy of Sciences, 2024

Creative Commons License
Бұл мақала лицензия бойынша қол жетімді Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.