Comparison of mesoscale and large-eddy simulation results with observational data in the atmospheric boundary layer

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Рұқсат ақылы немесе тек жазылушылар үшін

Аннотация

A numerical model of micrometeorology and turbulent dynamics of the daytime atmospheric boundary layer over a complex surface is developed. The model is built by nesting the large-eddy simulation using PALM into the mesoscale weather forecast model WRF. The modeling results are compared with data from acoustic and microwave sounding of the atmosphere, as well as ground-based and airborne observations using a tethered balloon with temperature and humidity sensors. Estimates of deviations of the main meteorological and turbulent parameters predicted by the model from the measured values are obtained.

Толық мәтін

Рұқсат жабық

Авторлар туралы

S. Anisimov

Schmidt Institute of Physics of the Earth of the RAS

Email: svga@borok.yar.ru

Borok Geophysical Observatory

Ресей, Borok, 142, Yaroslavl region, 152742

E. Mareev

Gaponov-Grekhov Institute of Applied Physics of the RAS

Email: svga@borok.yar.ru
Ресей, Ulyanova, 46, Nizhny Novgorod, 603950

S. Galichenko

Schmidt Institute of Physics of the Earth of the RAS

Хат алмасуға жауапты Автор.
Email: svga@borok.yar.ru

Borok Geophysical Observatory

Ресей, Borok, 142, Yaroslavl region, 152742

N. Ilin

Gaponov-Grekhov Institute of Applied Physics of the RAS

Email: svga@borok.yar.ru
Ресей, Ulyanova, 46, Nizhny Novgorod, 603950

A. Prokhorchuk

Schmidt Institute of Physics of the Earth of the RAS

Email: svga@borok.yar.ru

Borok Geophysical Observatory

Ресей, Borok, 142, Yaroslavl region, 152742

E. Klimanova

Schmidt Institute of Physics of the Earth of the RAS

Email: svga@borok.yar.ru

Borok Geophysical Observatory

Ресей, Borok, 142, Yaroslavl region, 152742

A. Kozmina

Schmidt Institute of Physics of the Earth of the RAS

Email: svga@borok.yar.ru

Borok Geophysical Observatory

Ресей, Borok, 142, Yaroslavl region, 152742

K. Aphinogenov

Schmidt Institute of Physics of the Earth of the RAS

Email: svga@borok.yar.ru

Borok Geophysical Observatory

Ресей, Borok, 142, Yaroslavl region, 152742

A. Guriev

Schmidt Institute of Physics of the Earth of the RAS

Email: svga@borok.yar.ru

Borok Geophysical Observatory

Ресей, Borok, 142, Yaroslavl region, 152742

Әдебиет тізімі

  1. Анисимов С.В., Афиногенов К.В., Галиченко С.В., Прохорчук А.А., Климанова Е.В., Козьмина А.С., Гурьев А.В. Электричество невозмущённого атмосферного пограничного слоя средних широт // Изв. РАН. Физика атмосферы и океана. 2023. Т. 59. № 5. С. 595–611.
  2. Глазунов А.В., Дымников В.П. Пространственные спектры и характерные горизонтальные масштабы флуктуаций температуры и скорости в конвективном пограничном слое атмосферы // Изв. РАН. Физика атмосферы и океана. 2013. Т. 49. № 1. С. 3761.
  3. Anderson W., Meneveau C. A large-eddy simulation model for boundary-layer flow over surfaces with horizontally resolved but vertically unresolved roughness elements // Boundary-Layer Meteorol. 2010. V. 137. P. 397–415.
  4. Anisimov S.V., Galichenko S.V., Aphinogenov K.V., Klimanova E.V., Prokhorchuk A.A., Kozmina A.S., Guriev A.V. Mid-latitude convective boundary-layer electricity: A study by using a tethered balloon platform // Atmos. Res. 2021a. V. 250. 105355.
  5. Anisimov S.V., Galichenko S.V., Prokhorchuk A.A., Aphinogenov K.V. Mid-latitude convective boundary-layer electricity: A study by large-eddy simulation // Atmos. Res. 2020. V. 244. 105035.
  6. Anisimov S.V., Galichenko S.V., Prokhorchuk A.A, Klimanova E.V. Statistics of variations in atmospheric electrical parameters based on a three-dimensional model and field observations // Atmos. Res. 2021b. V. 259. 105660.
  7. Ayotte K.W., Sullivan P.P., Andrén A., Doney S.C., Holtslag A.A.M., Large W.G., McWilliams J.C., Moeng C.-H., Otte M.J., Tribbia J.J., Wyngaard J.C. An evaluation of neutral and convective planetary boundary-layer parameterizations relative to large eddy simulations // Boundary–Layer Meteorol. 1996. V. 79. P. 131–175.
  8. Bannon P.R. On the anelastic approximation for a compressible atmosphere // J. Atmos. Sci. 1996. V. 53. P. 3618–3628.
  9. Benzi R., Toschi F., Tripiccione R. On the heat transfer in Rayleigh–Bénard Systems. // J. Stat. Phys. 1998. V. 93. P. 901–918.
  10. Ching J., Rotunno R., Lemone M., Martilli A., Kosović B., Jimenez P.A., Dudhia J. Convectively induced secondary circulations in fine-grid mesoscale numerical weather prediction models // Mon. Weather Rev. 2014. V. 142. P. 3284–3302.
  11. DeLeon R., Umphrey C., Senocak I. Turbulent inflow generation through buoyancy perturbations with colored noise // AIAA J. 2019. V. 57. P. 532–542.
  12. Dobler W., Haugen N.E.L., Yousef T.A., Brandenburg A. Bottleneck effect in three-dimensional turbulence simulations // Phys. Rev. E 2003 V. 68. P. 026304.
  13. Dudhia J. A nonhydrostatic version of the Penn State-NCAR mesoscale model: validation tests and simulation of an Atlantic cyclone and cold front // Mon. Weather Rev. 1993. V. 121. P. 1493–1513.
  14. Gehrke K.F., Sühring M., Maronga B. Modeling of land-surface interactions in the PALM model system 6.0: land surface model description, first evaluation, and sensitivity to model parameters // Geosci. Model Dev. 2021. V. 14. P. 5307–5329.
  15. Germano M., Piomelli U., Moin P., Cabot W.H. A dynamic subgrid-scale eddy viscosity model // Phys. Fluids A. 1991. V. 3. P. 1760–1765.
  16. Gibbs J.A., Fedorovich E., van Eijk A.M.J. Evaluating weather research and forecasting (WRF) model predictions of turbulent flow parameters in a dry convective boundary layer // J. Appl. Met. Clim. 2011. V. 50. P. 2429–2444.
  17. Goger B., Rotach M.W., Gohm A., Stiperski I., Fuhrer O., de Morsier G. A new horizontal length scale for a three-dimensional turbulence parameterization in mesoscale atmospheric modeling over highly complex terrain // J. Appl. Met. Clim. V. 58. P. 2087–2102.
  18. Haupt S.E., Kosović B., Shaw W., Berg L.K., Churchfield M., Cline J., Draxl C., Ennis B., Koo E., Kotamarthi R., Mazzaro L., Mirocha J., Moriarty P., Muños-Esparza D., Quon E., Rai K.R., Robinson M., Sever G. On bridging a modeling scale gap mesoscale to microscale coupling for wind energy // Bull. American Met. Soc. 2019. V. 100(12). P. 2533–2549.
  19. He C., Valayamkunnath P., Barlage M., Chen F., Gochis D., Cabell R., Schneider T., Rasmussen R., Niu G.-Y., Yang Z.-L., Niyogi D., Ek M. The Community Noah-MP Land Surface Modeling System Technical Description Version 5.0 // NCAR Tech. Note NCAR/TN-575+STR 2023, doi: 10.5065/ew8g-yr95.
  20. Heldens W., Burmeister C., Kanani-Sühring F., Maronga B., Pavlik D., Sühring M., Zeidler J., Esch T. Geospatial input data for the PALM model system 6.0: model requirements, data sources and processing // Geosci. Model Dev. 2020. V. 13. P. 5833–5873.
  21. Hellsten A., Ketelsen K., Sühring M., Auvinen M., Maronga B., Knigge C., Barmpas F., Tsegas G., Moussiopoulos N., Raasch S. A nested multi-scale system implemented in the large-eddy simulation model PALM model system 6.0 // Geosci. Model Dev. 2021. V. 14. P. 3185–3214.
  22. Honnert R., Masson V., Couvreux F. A diagnostic for evaluating the representation of turbulence in atmospheric models at the kilometric scale // J. Atm. Sci. 2011. V. 68. P. 3112–3131.
  23. Iacono M.J., Delamere J.S., Mlawer E.J., Shephard M.W., Clough S.A., Collins W.D. Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models // J. Geophys. Res. Atmos. 2008. V. 113. D13103, doi: 10.1029/2008JD009944.
  24. Kadasch E., Sühring M., Gronemeier T., Raasch S. Mesoscale nesting interface of the PALM model system 6.0 // Geosci. Model Dev. 2021. V. 14. P. 5435–5465.
  25. Janjić Z.I. The Step-Mountain Eta Coordinate Model: Further developments of the convection, viscous sublayer, and turbulence closure schemes // Mon. Weather Rev. 1994. V. 122. P. 927–945.
  26. Kain J.S. The Kain–Fritsch convective parameterization: an update // J. Appl. Meteor. Climatol. 2004. V. 43. P. 170–181.
  27. Kim E., Choi K., Park S., Kim M.-H., Kim S.-W., Park M.-S., Ahn M.-H., Park Y.-S., Song C.-K. Turbulent characteristics in complex coastal areas assessed using BSWO observations and WRF-LES simulation results // Atmos. Res. 2023. V. 289. 106756.
  28. Kozlov A., Slyunyaev N.N., Ilin N., Sarafanov F.G., Frank-Kamenetsky A.V. The effect of the Madden-Julian Oscillation on the global electric circuit // Atmos. Res. 2022. V. 284. 106585.
  29. Lilley M., Lovejoy S., Strawbridge K.B., Schertzer D., Radkevich A. Scaling turbulent atmospheric stratification. II: Spatial stratification and intermittency from lidar data // Q. J. R. Meteorol. Soc. 2008.V. 134. P. 301–315.
  30. Lilly D.K. A comparison of incompressible, anelastic and Boussinesq dynamics // Atmos. Res. V. 40. P. 143–151.
  31. Lin D., Khan B., Katurji M., Bird L., Faria R., Revell L.E. WRF4PALM v1.0: a mesoscale dynamical driver for the microscale PALM model system 6.0 // Geosci. Model Dev. 2021. V.14. P. 2503–2524.
  32. Liu Y., Liu Y., Muñoz-Esparza D., Hu F. Simulation of flow fields in complex terrain with WRF-LES: sensitivity assessment of different PBL treatments // J. Appl. Met. Clim. 2020. V. 59. P. 1481–1501.
  33. Lovejoy S., Schertzer D., Tuck A.F. Fractal aircraft trajectories and nonclassical turbulent exponents // Phys. Rev. E 2004. V. 70. 036306.
  34. Lund T.S., Wu X., Squires K.D. Generation of turbulent inflow data for spatially-developing boundary layer simulations // J. Comp. Phys. 1998. V. 140. P. 233–258.
  35. Maronga B., Banzha, S., Burmeister C., Esch T., Forkel R., Frölich D., Fuka V., Gehrke K.F., Geletič J., Giersch S., Gronemeier T., Groβ G., Heldens W., Hellsten A., Hoffmann F., Inagaki A., Kadasch E., Kanani-Sühring F., Ketelsen K., Ali Khan B., Knigge C., Knoop H., Krč P., Kurppa M., Maamari H., Matzarakis A., Mauder M., Pallasch M., Pavlik D., Pfafferott J., Resler J., Rissman S., Russo E., Salim M., Schrempf M., Schwenkel J., Seckmeyer G., Schubert S., Sühring M., von Tils R., Vollmer L., Ward S., Witha B., Wurps H., Zeidler J., Raasch S. Overview of the PALM model system 6.0.// Geosci. Model. Dev. 2020. V. 13. P. 1335–1372.
  36. Mayor S.D., Spalart P.R., Tripoli G.J. Application of a perturbation recycling method in the large-eddy simulation of a mesoscale convective internal boundary layer // J. Atmos. Sci. 2002. V. 59. P. 2385–2395.
  37. Mihaljan J.M. A rigorous exposition of the Boussinesq approximations applicable to a layer of thin fluid // J. Astrophys. 1962. V. 136. P. 1126–1133.
  38. Moeng C.-H., Dudhia J., Klemp J., Sullivan P. Examining two-way grid nesting for large eddy simulation of the PBL using the WRF model // Monthly Wea. Rev. 2007. V. 135. P. 2295–2311.
  39. Muños–Esparza D., Kosović B., García-Sánches C., van Beeck J. Nesting turbulence in an offshore convective boundary layer using large-eddy simulations // Boundary–Layer Meteorol. 2014. V. 151. P. 453–478.
  40. Muños–Esparza D., Lundquist J.K., Sauer J., Kosović B., Linn R.R. Coupled mesoscale-LES modeling of a diurnal cycle during the CWEX-13 field campaign: From weather to boundary layer eddies // J. Adv. Mod. Earth Sys. 2017. V. 9. P. 1572–1594.
  41. Muños–Esparza D., Kosović B. Generation of inflow turbulence in large-edy simulations of nonneutral atmospheric boundary layers with the cell perturbation method // Monthly Wea. Rev. 2018. V. 146. P. 1889–1909.
  42. Nakayama H., Takemi T., Nagai H. Large-eddy simulation of urban boundary-layer flows by generating turbulent inflows from mesoscale meteorological simulations // Atmos. Sci. Let. 2012. V. 13. P. 180–186.
  43. Ogura Y., Philips N.A. Scale analysis of deep and shallow convection in the atmosphere // J. Atmos. Sci. 1962. V. 19. P. 173–179.
  44. Powers J.G., Klemp J.B., Skamarock W.C., Davis C.A., Dudhia J., Gill D.O., Coen J.L., Gochis D.J., Ahmadov R., Peckham S.E., Grell G.A., Michalakes J., Trahan S., Benjamin S.G., Alexander C.R., Dimego J., Wang W., Schwartz C.S., Romine G.S., Liu Z., Snyder C., Chen F., Barlage M.J., Yu W., Duda M.G. The Weather Research and Forecasting (WRF) Model: Overview, system efforts, and future directions // Bull. Amer. Met. Soc. 2017. V. 98. P. 1717–1737.
  45. Rai R.K., Berg L.K., Kosović B., Mirocha J.D., Pekour M.S., Shaw W.J. Comparison of measured and numerically simulated turbulence statistics in a convective boundary layer over complex terrain // Boundary–Layer Meteorol. 2017. V. 163. P. 69–89.
  46. Rai R.K., Berg L.K., Kosović B., Haupt S.E., Mirocha J.D., Ennis B., Draxl C. Evaluation of the impact of horizontal grid spacing in Terra Incognita on coupled mesoscale-microscale simulations using the WRF framewotrk // Mon. Weather. Rev. 2019. V. 147. P. 1007–1027.
  47. Senocak I., DeLeon R. Turbulent inflow generation for large-eddy simulation of winds around complex terrain // Atmosphere 2023. V. 14. 447.
  48. Schalkwijk J., Jonker H.J.J., Siebesma A.P., Meijgaard E.V. Weather forecasting using GPU-based Large–Eddy Simulations // Bull. Amer. Met. Soc. 2015 V. 96(5). P. 715–723.
  49. Skamarock W.C., Klemp J.B., Dudhia J., Gill D.O., Liu Z., Berner J., Wang W., Powers J.G., Duda M.G., Barker D.M., Huang X.-Y. A Description of the Advanced Research WRF Version 4 // NCAR Tech. Note NCAR/TN-556+STR. 2019. 145 pp.
  50. Slyunyaev N.N., Ilin N., Mareev E.A., Price C.G. A new link between El Niño – Southern Oscillation and atmospheric electricity // Envir. Res. Lett. 2021. V. 16. 044025.
  51. Spiegel E.A., Veronis G. On the Boussinesq approximation for a compressible fluid // J. Astrophys. 1960. V. 131. P. 442–447.
  52. Stoll R., Gibbs J.A., Salesky S.T., Anderson W., Calaf M. Large-eddy simulation of the atmospheric boundary layer // Boundary–Layer Meteorol. 2020. V. 177. P. 541–581.
  53. Talbot C., Bou-Zeid E., Smith J. Nested mesoscale largeeddy simulations with WRF: performance in real test cases // J. Hydrometeorol. 2012. V. 13. P. 1421–1441.
  54. Thompson G., Field P.R. Rasmussen R.M., Hall W.D. Explicit Forecasts of Winter Precipitation Using an Improved Bulk Microphysics Scheme. Part II: Implementation of a New Snow Parameterization // Mon. Weather Rev. 2008. V. 136. P. 5095–5115, https://doi.org/10.1175/2008MWR2387.1.
  55. Udina M., Montornès À., Casso P., Kosović B., Bech J. WRF-LES simulation of the boundary layer turbulent processes during the BLLAST campaign // Atmosphere 2020, V. 11. 1149.
  56. Wingaard J.C. Toward numerical modeling in the “Terra Incognita” // J. Atm. Sci. 2004. V. 61. P. 1816–1826.
  57. Wyszogrodzki A.A., Miao S., Chen F. Evaluation of the coupling between mesoscale-WRF and LES-EULAG models for simulating fine-scale urban dispersion // Atmos. Res. 2012. V. 118. P. 324–345. https://ral.ucar.edu/document-or-file/noah-lsm-users-guide.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Schematic diagram of nesting of computational domains D1–D5

Жүктеу (91KB)
3. Fig. 2. a) ESA WorldCover data (https://esa-worldcover.org/en) prepared using the PALM static driver, b) schematic diagram of the arrangement of cells in which the small-scale turbulence excitation method is applied

Жүктеу (55KB)
4. Fig. 3. Incoming shortwave solar radiation flux density

Жүктеу (27KB)
5. Fig. 4. WRF-calculated distributions of geopotential height at 500 hPa (upper row) and atmospheric pressure at ground level (lower row) at 12:00 local time; the dot shows the position of the Borok Geophysical Observatory of the IPE RAS (58° 04ʹ N, 38° 14ʹ E)

Жүктеу (70KB)
6. Fig. 5. Observed and calculated in the WRF D1 model altitude profiles of potential temperature and horizontal wind speed modulus at 12 UTC on 17.08.2023; horizontal lines on the temperature graphs show the height of the ABL

Жүктеу (51KB)
7. Fig. 6. Results of modeling and ground-based observations of temperature (T), specific humidity (q), modulus (Vh) and direction of horizontal wind speed; min and max show instantaneous extreme values in a square of 1 km2 in the center of D5, the LES wind direction is averaged over the specified square; the height of 42 m is measured from the lower boundary of D5, coinciding with the river level and is above all relief inhomogeneities in D5 (the height difference in D5 is 42 m, the median height in D5 from the lower boundary is 10 m)

Жүктеу (121KB)
8. Fig. 7. Model and measured MTP-5 altitude profiles of temperature with 5-min averaging

Жүктеу (68KB)
9. Fig. 8. Model and measured MTP-5 temperature variations at three altitude levels with 5-min averaging

Жүктеу (71KB)
10. Fig. 9. Temperature and specific humidity variations at two altitude levels based on balloon observations with 40-min averaging, WRF results with 10-min averaging, and LES with 1-min averaging

Жүктеу (60KB)
11. Fig. 10. Altitude profiles of horizontal wind speed modulus based on acoustic sounding data (SODAR), WRF, and LES results with 10-min averaging; gray lines show instantaneous LES profiles; LES results averaging area is 1 km2

Жүктеу (47KB)
12. Fig. 11. Altitude profiles of horizontal wind speed direction based on acoustic sounding data, WRF, and LES results with 10-min averaging; LES results averaging area is 1 km2

Жүктеу (64KB)
13. Fig. 12. Statistical diagrams of deviations of temperature (T), specific humidity (q), and vertical turbulent heat flux density (H) calculated by WRF and LES from those measured by ultrasonic weather stations and deviations between the results of spaced measurements; the number of readings and distances between weather stations are given in Tables 3–5; averaging periods T and q – 1 min, H – 20 min

Жүктеу (44KB)
14. Fig. 13. Vertical profiles of the second moments of turbulent fluctuations of the wind speed components, resolved (K) and subfilter (e) TKE in LES with averaging over the area D5 and over time from 11:30 to 12:30 LT on 17.08.2023

Жүктеу (39KB)
15. Fig. 14. Variations in the model resolved (K), subfilter (e) components and the measured total TKE with averaging for 1 min

Жүктеу (115KB)
16. Fig. 15. Horizontal distributions of temperature and horizontal wind speed modulus WRF on grids D3 and Dʹ4 at a height of 160 m and LES on grid D4 at a height of 168 m at 11:00 on 17.08.2023

Жүктеу (65KB)
17. Fig. 16. Structural functions of model absolute differences (left), spectral density of measured temperature fluctuations and horizontal wind speed modulus (right)

Жүктеу (63KB)

© Russian Academy of Sciences, 2025

Creative Commons License
Бұл мақала лицензия бойынша қол жетімді Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.