Atmospheric centers of action: modern features and possible changes from simulations with CMIP6 and CMIP5 models

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

The results of an analysis of changes in the characteristics of atmospheric centers of action (ACAs) in the Northern (NH) and Southern (SH) hemispheres using results of simulations with the CMIP5 and CMIP6 ensembles of climate models are presented. The ability of models to simulate ACA features is estimated for the historical scenario in comparison with ERA5 reanalysis data. The projected changes are evaluated under RCP8.5 and SSP5-8.5 scenarios for CMIP5 and CMIP6 models, respectively. The ACA intensity is evaluated that defined as the difference in sea level pressure averaged over the ACA region and the entire hemisphere. In NH, reanalysis and models show greater intensity of subtropical oceanic anticyclonic ACAs in summer than in winter. The opposite is found for the intensity of NH subpolar oceanic cyclonic ACAs. The interannual variability of the ACA intensity in winter is generally greater than in summer. In SH, the season with greater intensity of oceanic anticyclonic and cyclonic ACAs and its interannual variability varies from ocean to ocean. CMIP5 and CMIP6 models show substantial changes of ACAs intensity in the ХХIst century. More significant trends in the strengthening of ACAs in the ХХIst century appear in the SH, especially in the winter seasons. The most consistent weakening trends are found over continents for winter North American maximum and the summer Asian minimum. For the winter Siberian maximum, the weakening trend is found more pronounced in CMIP6 models than in CMIP5.

全文:

受限制的访问

作者简介

I. Mokhov

Obukhov Institute of Atmospheric Physics of the RAS; Lomonosov Moscow State University

编辑信件的主要联系方式.
Email: mokhov@ifaran.ru
俄罗斯联邦, Pyzhevsky per., 3, bld. 1, Moscow, 119017; Leninskie gory, 1, bld. 2, Moscow, 119991

A. Osipov

Lomonosov Moscow State University

Email: mokhov@ifaran.ru
俄罗斯联邦, Leninskie gory, 1, bld. 2, Moscow, 119991

A. Chernokulsky

Obukhov Institute of Atmospheric Physics of the RAS

Email: mokhov@ifaran.ru
俄罗斯联邦, Pyzhevsky per., 3, bld. 1, Moscow, 119017

参考

  1. Безотеческая Е.А., Чхетиани О.Г., Мохов И.И. Изменчивость струйных течений в атмосфере Северного полушария в последние десятилетия (1980–2021 гг.) // Изв. РАН. Физика атмосферы и океана. 2023. Т. 59. № 3. С. 265–274.
  2. Блинова Е.М. Гидродинамическая теория волн давления, температурных волн и центров действия атмосферы // Доклады АН СССР. 1943. Т. 39. № 7. С. 284–287.
  3. Галин М.Б., Харитоненко В.М. Роль орографических и термических неоднородностей поверхности в формировании планетарных волн // Изв. АН СССР. Физика атмосферы и океана. 1989. Т. 25. № 5. С. 473–484.
  4. Гущина Д.Ю., Петросянц М.А. О связи температуры поверхности экваториальной части Тихого океана с циркуляцией скорости ветра в центрах действия атмосферы // Метеорология и гидрология. 1998. № 12. С. 5–22.
  5. Железнова И.В., Гущина Д.Ю. Аномалии циркуляции в центрах действия атмосферы в период Восточно-Тихоокеанского и Центрально-Тихоокеанского Эль-Ниньо // Метеорология и гидрология. 2016. № 11. С. 41–55.
  6. Интенсивные атмосферные вихри и их динамика / Под. ред. И.И. Мохова, М.В. Курганского, О.Г. Чхетиани. М.: ГЕОС, 2018. 482 с.
  7. Мохов И.И., Осипов А.М., Чернокульский А.В. Центры действия атмосферы в Северном полушарии: современные особенности и ожидаемые изменения в ХХI в по расчетам с ансамблями климатических моделей CMIP5 и CMIP6 // ДАН. Науки о Земле. 2022. Т. 507. № 2. С. 174–182.
  8. Мохов И.И., Петухов В.К. Центры действия в атмосфере и тенденции их изменения // Изв. АН. Физика атмосферы и океана. 2000. Т. 36. № 3. С. 321–329.
  9. Мохов И.И., Хон В.Ч. Межгодовая изменчивость и долгопериодные тенденции изменений центров действия атмосферы в Северном полушарии. Анализ данных наблюдений // Изв. РAH. Физикa aтмocфepы и oкeaнa. 2005. Т. 41. № 6. С. 723–732.
  10. Мохов И.И., Чернокульский А.В., Осипов А.М. Центры действия атмосферы Северного и Южного полушарий: особенности и изменчивость // Метеорология и гидрология. 2020. № 11. С. 5–23.
  11. Переведенцев Ю.П., Исмагилов П.В., Шанталинский К.М. Центры действия и их взаимосвязь с макроциркуляционными процессами Северного полушария // Метеорология и гидрология. 1994. № 3. С. 43–50.
  12. Хон В.Ч., Мохов И.И. Модельные оценки чувствительности центров действия атмосферы к глобальным климатическим изменениям // Изв. РАН. Физика атмосферы и океана. 2006. Т. 42. № 6. С. 749–756.
  13. Chernokulsky A.V., Mokhov I.I., Nikitina N.G. Winter cloudiness variability over Northern Eurasia related to the Siberian High during 1966-2010 // Environ. Res. Lett. 2013. V. 8(4). P. 045012. doi: 10.1088/1748-9326/8/4/045012
  14. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. T.F. Stocker, D. Qin, G.-K. Plattner et al. (eds.). Cambridge Univ. Press, Cambridge, New York. 2013. 1535 pp.
  15. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge Univ. Press, Cambridge, New York, 2021. 2391 pp.
  16. Cohen J., Saito K., Entekhabi D. The role of the Siberian high in Northern Hemisphere climate variability // Geophys. Res. Lett. 2001. V. 28. P. 299–302.
  17. Haurwitz B.J. The motion of atmospheric disturbances on the spherical Earth // Marine Res. 1940. V. III (1–3).
  18. Hersbach H. et al. The ERA5 global reanalysis // Q. J. R. Meteorol. Soc. 2020. V. 146. P. 1999–2049.
  19. Mokhov I.I., Osipov A.M., Chernokulsky A.V. Atmospheric centers of action in the Northern Hemisphere: Possible changes in the ХХI st century from CMIP6 model simulations // Research Activities in Earth System Modelling, E. Astakhova (ed.), 2022. Rep. 52, S. 7, 9–10.
  20. Rossby C.G. et al. Relation between variations in the intensity of the zonal circulation of the atmosphere and the displacements of the semi-permanent centres of action // J. Marine Res. 1939. V. II (1). P. 38–55.
  21. Smagorinsky J. The dynamical influence of large-scale heat sources and sinks on the quasi-stationary mean motions of the atmosphere // Quart. J. Roy. Meteorol. Soc. 1953. V. 79. P. 342–366.
  22. Sun X.J., Wang P.X., Wang J.X.L. An assessment of the atmospheric centers of action in the northern hemisphere winter // Clim. Dyn. 2017: V. 48. P. 1031–1047.
  23. Trenberth K.E., Branstator G.W., Karoly D., Kumar A., Lau N.-C., Ropelewski C. Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures // J. Geophys. Res. 1998. V. 103. P. 14291–14324.
  24. Wallace J.M. The climatological mean stationary waves: observational evidence / In: Large-scale Dynamical Processes in the Atmosphere. Eds. B. Hoskins and R. Pearce. London, Acad. Press. 1988. P. 27–53.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Location of the analyzed CDA in December–January–February (a) and June–July–August (b). Red contours mark maxima, blue contours mark minima. Numbers correspond to the numbering in Table 1

下载 (164KB)
3. Fig. 2. Taylor diagrams characterizing the degree of correspondence between the atmospheric pressure field at sea level in the NH (a, b, e, f) and SH (c, d, g, h) based on calculations with the full ensembles of CMIP5 (a–d) and CMIP6 (e–h) climate models (“historical” scenario) and based on ERA5 reanalysis data for the winter (a, c, e, g) and summer (b, d, f, h) seasons for the base period of 1981–2005. The radial coordinate characterizes the spatial standard deviation of pressure (hPa), the angular coordinate is the coefficient of spatial correlation of the pressure field between the results of model calculations and the reanalysis data. The green dotted line characterizes the standard deviation (in hPa) of the model calculations relative to the corresponding estimates from the reanalysis data. The model numbers are the same as in Table 2

下载 (104KB)
4. Fig. 3. The number of CACs for which agreement of Ic values (within their standard deviation) was noted between the ERA5 reanalysis data and the CMIP5 (a) and CMIP6 (b) models for different hemispheres and different seasons. The total number of CACs for each hemisphere/season is shown in brackets below. CACs for winter seasons are marked in blue, and for summer seasons – in red

下载 (165KB)
5. Fig. 4. The proportion of models for which agreement of Ic values (within their standard deviation) was obtained with the corresponding values from the ERA5 reanalysis data for different CACs for different seasons (the total number of models for each ensemble is shown in brackets)

下载 (80KB)
6. Fig. 5.1. Changes in the intensity Icʹ (normalized to the mean value for the 1981–2005 base period) of key winter ACAs in the NH: (a) Azores High, (b) Siberian High, (c) North American High, (d) Aleutian Low, (e) Icelandic Low. Shown are 25-year moving averages for the CMIP5 model ensembles in the RCP8.5 scenario (blue) and the CMIP6 models in the SSP5-8.5 scenario (orange), both combined with the corresponding historical scenario. Thick lines correspond to the ensemble mean; thin lines characterize the ranges (with shading) of the standard deviations between models. Solid lines represent the “best” models, dashed lines represent “all” models. Estimates of Icʹ > 1 correspond to strengthening ACAs (for both minima and maxima), while Icʹ < 1 correspond to weakening ACAs.

下载 (88KB)
7. Fig. 5.2. Same as Fig. 5.1, but for the summer season (June–July–August) for (a) the Azores High, (b) the Hawaiian High, and (c) the Asian Low

下载 (55KB)
8. Fig. 6.1. Same as Fig. 5.1, but for the SH for the winter season (June–July–August) for (a) the South Pacific High, (b) the South Atlantic High, (c) the Indian Ocean High, (d) the South American High, (e) the South African High, (e) the Australian High, (g) the South Pacific Low, (h) the South Atlantic Low, (i) the Indian Ocean Low

下载 (109KB)
9. Fig. 6.2. Same as Fig. 5.2, but for the SP for the summer season (December–January–February) for (a) South Pacific High, (b) South Atlantic High, (c) Indian Ocean High, (d) South Pacific Low, (d) South Atlantic Low, (e) Indian Ocean Low

下载 (88KB)

版权所有 © Russian Academy of Sciences, 2025

Creative Commons License
此作品已接受知识共享署名-非商业性使用-禁止演绎 4.0国际许可协议的许可。