Influence of modeling conditions on the estimation of the dry deposition velocity of aerosols on highly inhomogeneous surfaces

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

An approach to estimating the dry deposition velocity of aerosol particles on the surfaces of Arctic regions, where snow-covered surfaces, open water surface, tundra and coniferous forest predominate, is proposed and numerically investigated. Optimal modeling conditions are proposed, taking into account the characteristic sizes and densities of aerosol particles involved in transport in the planetary boundary layer, and the interaction of air flows with the surface through the parameter u*, calculated using the WRF-ARW model. The proposed approach is compared with other known models and experimental data. The dependence of the dry deposition velocity obtained by the proposed approach on the diameter, density of aerosol particles and dynamic velocity u* for the surfaces in the Far North is estimated.

Texto integral

Acesso é fechado

Sobre autores

D. Pripachkin

IBRAE RAS; NRNU “MEPhI“

Autor responsável pela correspondência
Email: dmrwer@mail.ru
Rússia, 115191, Moscow, Bolshaya Tulskaya str., 52; 115409, Moscow, Kashirskoe Highway, 31

V. Vysotsky

IBRAE RAS

Email: dmrwer@mail.ru
Rússia, 115191, Moscow, Bolshaya Tulskaya str., 52

A. Budyka

NRNU “MEPhI“

Email: dmrwer@mail.ru
Rússia, 115409, Moscow, Kashirskoe Highway, 31

Bibliografia

  1. Алоян А.Е. Моделирование динамики и кинетики газовых примесей и аэрозолей в атмосфере. М.: Наука, 2008. 415 с.
  2. Берлянд М.Е. Современные проблемы атмосферной диффузии загрязнения атмосферы. Л.: Гидрометеоиздат, 1975. 448 с.
  3. Будыка А.К., Припачкин Д.А. Радиоактивные аэрозоли. Начальные сведения. Учебное пособие. М.: НИЯУ МИФИ, 2022. 96 с.
  4. Волков В.А. Коллоидная химия. Поверхностные явления и дисперсные системы: учебник. СПб.: Лань, 2022. 672 с.
  5. Гусев Н.Г., Беляев В.А. Радиоактивные выбросы в биосфере: Справочник. М.: Энергоатомиздат, 1991. 256 с.
  6. Колмогоров А.Н. О логарифмически-нормальном законе распределения размеров частиц при дроблении // Докл. АН СССР. 1941. Т. 31. C. 99–101.
  7. Монин А.С., Обухов А.М. Основные закономерности турбулентного перемешивания в приземном слое атмосферы // Тр. Геофиз. ин-та АН СССР. 1954. Т. 24. С. 163–187.
  8. Метеорология и атомная энергия / Под ред. Н.Л. Бызовой. Л.: Гидрометеоиздат, 1971. 648 с.
  9. Методика расчета рассеяния загрязняющих веществ в атмосфере при аварийных выбросах. Обнинск. РД 52.18.717-2009. 2009. 121 с.
  10. Огородников Б.И., Скитович В.И., Будыка А.К. Дисперсный состав искусственных и естественных радиоактивных аэрозолей в 30-км зоне ЧАЭС в 1986–1996 гг. // Радиационная биология. Радиоэкология. 1998. Т.38. № 6. С. 889–892.
  11. Пискунов В.Н. Динамика аэрозолей. М.: Физматлит, 2010. 296 с.
  12. Саркисов А.А., Антипов С.В., Высоцкий В.Л. и др. Радиационные и радиоэкологические последствия гипотетической ядерной аварии на атомном объекте в районе расположения ФГУП “Атомфлот” // Атомная энергия. 2022. Т. 133. № 4. С. 229–238.
  13. Baklanov A., Sorensen J.H. Parameterization of radionuclide deposition in atmospheric long-range transport modelling // Phys. Chem. Earth. (B). 2001. V. 26. №. 10. P. 787–799.
  14. Brioude J., Arnold D., Stohl A. et al. The Lagrangian particle dispersion model FLEXPART-WRF version 3.1 // Geosci. Model Dev. 2013 V. 6. P. 1889–1904.
  15. Dorrian M.-D., Bailey M.R. Particle size distributions of radioactive aerosols in workplaces // Radiat. Prot. Dosimetry. 1995. V. 60. № 2. P. 119–133.
  16. Farmer D.K., Boedicker E.K., DeBolt H.M. Dry deposition of atmospheric aerosols: approaches, observations, and mechanism // Annu. Rev. Phys. Chem. 2021. V. 72. P. 375–97.
  17. Garger E.K. The rate of dry deposition of radioactive substances of Chernobyl origin according to observations // Problemi Bezpeki Atomnikh Elektrostantsyij yi Chornob. 2018. V. 31. P. 85–103.
  18. Giardina M., Buffa P. A new approach for modeling dry deposition velocity of particles // Atmos. Environ. 2018. V. 180. P. 11–22.
  19. Kharchenko A.I. Parametrization of dry deposition velocity in the atmospheric surface layer // J. Aerosol Sci. 1997. V. 28. P. 589–590.
  20. Moroz B.E., Beck H.L., Bouville A. et al. Predictions of dispersion and deposition of fallout from nuclear testing using the NOAA-HYSPLIT meteorological model. Health Phys. 2010. V. 99. № 2. P. 252–269.
  21. Müller H. ECOSYS-87. A dynamic model for assessing radiological consequences of nuclear accidents // Health Physics. 1993. V. 64. № 3. P. 232–252.
  22. Peters K.K. Modelling the dry deposition velocity of aerosol particles to a spruce forest // Atmospheric Environment. 1992. V. 21. P. 2555–2564.
  23. Petroff A., Zhang L. Development and validation of a size-resolved particle dry deposition scheme for application in aerosol transport models // Geosci. Model Dev. 2010. V. 3. P. 753–69.
  24. Report 2009. Technical Analysis of Dry Deposition. Department of Energy Washington, DC 20585, 2010. 13 p.
  25. Sehmel G.A. Particle and gas dry deposition: a review // Atmos. Environ. 1980. V. 14. P. 983–1011.
  26. Skamarock W.C., Klemp J.B., Dudhia J. et al. Description of the Advanced Research WRF Version 3. NCAR Technical Note NCAR/TN-475+STR. 2008. 520 p.
  27. Slinn W.G.N. Parameterization for resuspension and for Wet and Dry Deposition of Particles and Gases for Use in Radiation Dose Calculations // Nucl. Safety. 1978. V. 19. № 2. P. 205–219.
  28. Slinn S.A. Prediction for particle deposition on natural waters // Atmos. Environ. 1980. V. 14. P. 1013–1016.
  29. Zhang L., Gong S., Padro J. et al. A size-segregated particle dry deposition scheme for an atmospheric aerosol model // Atmos. Environ. 2001. V. 35. P. 549–560.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. The distance X traveled by aerosol particles before they are completely deposited on the surface at wind speeds of 1 m/s, particle density of 2.5 g/cm3 (— 1) and 5 g/cm3 (---2) and 5 m/s, particle density of 2.5 g/cm3 (— 3) and 5 g/cm3 (---4).

Baixar (78KB)
3. Fig. 2. Dependence of the dynamic velocity u* on the roughness parameter z0 in the WRF-ARW model (calculation results (X) and approximation (···) according to formula (2).

Baixar (63KB)
4. Fig. 3. Results of estimating the dry deposition rate Vd of aerosol particles on water (a) and snow-covered surfaces (b), obtained under the following conditions: 2, 4 – calculation using formula (7), 1, 3 – data from [Giardina et al., 2018] at u* = 0.10 and 0.14 m/s, respectively.

Baixar (87KB)
5. Fig. 4. Results of estimating the dry deposition rate Vd of aerosol particles on surfaces covered with vegetation: tundra (a) and coniferous forest (b). 2, 4 – calculation using formula (7); 1, 3 – data from [Giardina et al., 2018] at u* = 0.5 and 1.5 m/s, respectively.

Baixar (88KB)
6. Fig. 5. Dry sedimentation velocity Vd from particle diameter d with changing u* (a) and ρp (b) for a water surface (1, 2 – u* = 0.03 and 0.25 m/s for ρp = 2.5 g/cm3; 3, 4, 5 – ρp = 1, 2.5, 5 g/cm3 for u* = 0.1 m/s).

Baixar (107KB)
7. Fig. 6. Dry deposition velocity Vd from particle diameter d with changing u* (a) and ρp (b) for a surface covered with snow (1, 2 – u* = 0.5 and 0.8 m/s for ρp = 2.5 g/cm3; 3, 4, 5 – ρp = 1, 2.5, 5 g/cm3 for u* = 0.5 m/s).

Baixar (109KB)
8. Fig. 7. Dry sedimentation velocity Vd from particle diameter d with changing u* (a) and ρp (b) for tundra (1, 2 – u* = 0.5 and 1 m/s for ρp = 2.5 g/cm3; 3, 4, 5 – ρp = 1, 2.5, 5 g/cm3 for u* = 0.75 m/s).

Baixar (107KB)
9. Fig. 8. Dry sedimentation velocity Vd from particle diameter d with changing u* (a) and ρp (b) for coniferous forest (1, 2 – u* = 0.8 and 1.5 m/s for ρp = 2.5 g/cm3; 3, 4, 5 – ρp = 1, 2.5, 5 g/cm3 for u* = 1 m/s).

Baixar (110KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024

Creative Commons License
Este artigo é disponível sob a Licença Creative Commons Atribuição–NãoComercial–SemDerivações 4.0 Internacional.