The influence of nonlinear interaction on the evolution of waves in a shallow basin
- 作者: Rodin A.A.1, Rodina N.A.1,2, Kurkin A.A.1, Pelinovsky E.N.3,4,5,6
-
隶属关系:
- Nizhny Novgorod State Technical University n.a. R.E. Alekseev
- Lobachevsky State University of Nizhni Novgorod
- Institute of Applied Physics Russian Academy of Sciences
- Special Research Bureau for Automation of Marine Researches, Far Eastern Branch of Russian Academy of Sciences
- National Research University – Higher School of Economics
- University of Southern Queensland
- 期: 卷 55, 编号 4 (2019)
- 页面: 82-86
- 栏目: Articles
- URL: https://journals.eco-vector.com/0002-3515/article/view/16125
- DOI: https://doi.org/10.31857/S0002-351555482-86
- ID: 16125
如何引用文章
全文:
详细
The influence of counter interaction of nonlinear wave in the shallow water has been studied. It is shown that such an interaction leads to a change in the phase of propagation of the main wave, which is forced to propagate along the flow induced by the counter-propagating wave. Estimates of the height of the non-breaking wave at the moment of interaction are in agreement with theoretical predictions. The phase shift in the interaction of non-breaking waves is small enough, but becomes noticeable in the case of the breaking waves motion.
作者简介
A. Rodin
Nizhny Novgorod State Technical University n.a. R.E. Alekseev
编辑信件的主要联系方式.
Email: aakurkin@gmail.com
俄罗斯联邦, Minin Street 24, 603950, Nizhny Novgorod
N. Rodina
Nizhny Novgorod State Technical University n.a. R.E. Alekseev; Lobachevsky State University of Nizhni Novgorod
Email: na4aikovskaya@mail.ru
俄罗斯联邦, Minin Street 24, 603950, Nizhny Novgorod; Gagarin Avenue, 23, 603950, Nizhny Novgorod
A. Kurkin
Nizhny Novgorod State Technical University n.a. R.E. Alekseev
Email: aakurkin@gmail.com
俄罗斯联邦, Minin Street 24, 603950, Nizhny Novgorod
E. Pelinovsky
Institute of Applied Physics Russian Academy of Sciences; Special Research Bureau for Automation of Marine Researches, Far Eastern Branch of Russian Academy of Sciences; National Research University – Higher School of Economics; University of Southern Queensland
Email: pelinovsky@gmail.com
俄罗斯联邦, Ul’yanov Street, 46, 603950, Nizhny Novgorod; Gorky Street, 25, 693023, Yuzhno-Sakhalinsk; Bolshaya Pecherskaya Street, 25/12, 603155, Nizhny Novgorod; West Street, Darling Heights QLD 4350 Australia
参考
- Стокер Дж. Волны на воде. М.: Издательство иностранной литературы, 1959. 618 с.
- Вольцингер Н.Е., Клеванный К.А., Пелиновский Е.Н. Длинноволновая динамика прибрежной зоны. Л.: Гидрометеоиздат, 1989. 271 с.
- Арсеньев А.С., Шелковников Н.К. Динамика морских длинных волн. М.: МГУ, 1991. 88 с. 4. Ozer Sozdinler C., Yalciner А.С., Zaytsev А. Investigation of tsunami hydrodynamic parameters in inundation zones with different structural layouts // Pure and Applied Geophysics. 2015. V. 172. P. 931–952.
- Velioglu D., Kian R., Yalciner A.C., Zaytsev A. Performance Assessment of NAMI DANCE in Tsunami Evolution and Currents Using a Benchmark Problem // Journal of Marine Science and Engineering. 2016. V. 4(3). P. 49–1–8.
- Lynett P.J., Gately K., Wilson R., Montoya L., Arcas D., Aytore B., Bai Y., Bricker J.D., Castro M.J., Cheung K.F., David C.G., Doğan G.G., Escalante C., González-Vida J.M., Grilli S.T., Heitmann T.W., Horrillo J.J., Kânoglu U., Kian R., Kirby J.T., Li W., Macías J., Nicolsky D.J., Ortega S., Pampell-Manis A., Park Y.S., Roeber V., Sharghivand N., Shelby M., Shi F., Tehranirad B., Tolkova E., Thio H.K., Velioğlu D., Yalçiner A.C., Yamazaki Y., Zaytsev A., Zhang Y.J. Inter-model analysis of tsunami-induced coastal currents // Ocean Modelling. 2017. V. 114. P. 14–32.
- LeVeque R.J. Finite Volume Methods for Hyperbolic Problems. Cambridge: Cambridge University Press, 2002. 558 p.
- LeVeque R.J., George D.L., Berger M.J. Tsunami modeling with adaptively refined finite volume methods // Acta Numerica. 2011. V. 20. P. 211–289.
- Berger M., George D., LeVeque R.J., Mandli K.T. The GeoClaw software for depth-averaged flows with adaptive refinement // Advances in Water Resources. 2011. V. 34(9). P. 1195–1206.
- Gonzalez F.I., LeVeque R.J., Chamberlain P., Hirai Br., Varkovitzky J., George D.L. Validation of the GeoClaw model. Washington: University of Washington, 2011. 84 р.
- Пелиновский Е.Н. Гидродинамика волн цунами. Нижний Новгород: ИПФ РАН, 1996. 276 с.
- Пелиновский Е.Н., Диденкулова И.И., Куркин А.А., Родин А.А. Аналитическая теория наката морских волн на берег. Нижний Новгород: НГТУ им. Р.Е. Алексеева, 2015. 114 с.
- Raz A., Nicolsky D., Rybkin A., Pelinovsky E. Long wave run-up in asymmetric bays and in fjords with two separate heads // Journal of Geophysical Research – Oceanus. 2018. V. 123. № 3. P. 2066–2080.
- Пелиновский Е.Н., Родин А.А. Трансформация сильно нелинейной поверхностной волны в мелководном бассейне // Известия РАН. Физика атмосферы и океана. 2012. Т. 48. № 3. С. 383–390.
- Pelinovsky E., Kharif C., Talipova T. Large-amplitude long wave interaction with a vertical wall // European J. Mechanics – B/Fluids. 2008. V. 27. № 4. P. 409–418.
- Пелиновский Е.Н., Шургалина Е.Г., Родин А.А. О Критериях перехода обрушающегося бора в волнообразный // Известия РАН. Физика атмосферы и океана. 2015. T. 51. № 5. С. 598–601.
- Диденкулова, И.И. Заибо Н., Куркин А.А., Пелиновский Е.Н. Крутизна и спектр нелинейно деформируемой волны на мелководье // Известия РАН. Физика атмосферы и океана. 2006. Т. 42. № 6. C. 839–842.
- Курант Р., Фридрихс К. Сверхзвуковое течение и ударные волны. М.: Издательство иностранной литературы, 1950. 427 с.
补充文件
