Dqa1 gene variability in wild and domestic reindeer (Rangifer tarandus) of the Asian part of Russia

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Modern tendencies to intensification of breeding of domestic farm animals including reindeer necessitate a detailed study of genetic variability in candidate genes associated with meat productivity. At present, the primary task is to search for molecular genetic markers for identification and selection of individuals with desired characteristics. One such potential candidate gene is the DQA1 gene. It is hypothesized that individual genes of the immune system may influence the growth performance of animals. Variability in the DQA1 gene region has been associated with cattle size and beef production in many studies. Principal component analysis on DQA1 variability united wild and domestic reindeer in Yakutia, which implies gene flow between local breeds of domesticated reindeer and wild populations, and the formation of similar adaptation mechanisms. However, significant differences were found between wild and Evenki reindeer of the Amur region, which may reflect the influence of domestication processes on the Evenki breed.

About the authors

E. A. Konorov

Vavilov Institute of General Genetics, Russian Academy of Sciences; Gorbatov Federal Research Center for Food Systems, Russian Academy of Sciences

Email: casqy@yandex.ru
Moscow, 119991 Russia; Moscow, 109316 Russia

K. A. Kurbakov

Vavilov Institute of General Genetics, Russian Academy of Sciences; Gorbatov Federal Research Center for Food Systems, Russian Academy of Sciences

Email: casqy@yandex.ru
Moscow, 119991 Russia; Moscow, 109316 Russia

M. T. Semina

Vavilov Institute of General Genetics, Russian Academy of Sciences

Email: casqy@yandex.ru
Moscow, 119991 Russia

V. N. Voronkova

Vavilov Institute of General Genetics, Russian Academy of Sciences

Email: casqy@yandex.ru
Moscow, 119991 Russia

A. A. Onokhov

Vavilov Institute of General Genetics, Russian Academy of Sciences

Email: casqy@yandex.ru
Moscow, 119991 Russia

K. A. Layshev

Vavilov Institute of General Genetics, Russian Academy of Sciences; Center for Interdisciplinary Research of Food Security Problems

Author for correspondence.
Email: casqy@yandex.ru
Moscow, 119991 Russia; St. Petersburg, Pushkin, 196608 Russia

References

  1. Al-Waith H.K., Al-Anbari N.N., Mohamed T.R. Relationship of the DQA1 gene polymorphism with productive performance in Holstein cattle // Plant Archives. 2018. V. 18. P. 2636–2640. https://doi.org/10.5555/20203001636
  2. Kim H., Caetano-Anolles K., Seo M. et al. Prediction of genes related to positive selection using whole- genome resequencing in three commercial pig breeds // Genomics Inform. 2015. V. 13. P. 137–145. https://doi.org/10.5808/GI.2015.13.4.137
  3. Vandre R.K., Gowane G.R., Sharma A.K., Tomar S.S. Immune responsive role of MHC class II DQA1 gene in livestock // Livest. Res. Int. 2014. V. 2. P. 1–7.
  4. Park Y.H., Joo Y.S., Park J.Y. et al. Characterization of lymphocyte subpopulations and major histocompatibi- lity complex haplotypes of mastitis-resistant and susceptible cows // J. Veter. Sci. 2004. V. 5. № 1. P. 29–39. https://doi.org/10.4142/jvs.2004.5.1.29
  5. Vandre R.K., Sharma A.K., Gowane G.R. et al. Trend of association of BoLA-DQA1 alleles with FMDV vaccine elicited immune response in crossbred cattle // Indian J. Anim. Sci. 2014. V. 84. № 6. P. 619–623. https://doi.org/10.56093/ijans.v84i6.41569
  6. Cronin M.A., Renecker L., Pierson B.J., Patton J.C. Genetic variation in domestic reindeer and wild caribou in Alaska // Animal Genetics. 1995. V. 26. № 6. P. 427–434. https://doi.org/10.1111/j.1365-2052.1995.tb02695.x
  7. Kennedy L.J., Modrell A., Groves P. et al. Genetic diversity of the major histocompatibility complex class II in Alaskan caribou herds // Int. J. Immunogenetics. 2011. V. 38. № 2. P. 109–119. https://doi.org/10.1111/j.1744-313X.2010.00973.x
  8. Lukacs M., Nymo I.H., Madslien K. et al. Functional immune diversity in reindeer reveals a high Arctic population at risk // Front. in Ecol. and Evol. 2023. V. 10. https://doi.org/10.3389/fevo.2022.1058674
  9. Muuttoranta K., Holand Ø., Røed K.H. et al. Genetic variation in meat production related traits in reindeer (Rangifer t. tarandus) // Rangifer. 2014. V. 34. № 1. P. 21–36. https://doi.org/10.7557/2.34.1.2753
  10. Николаев С.В., Матюков В.С., Филатов А.В. Изменения микросателлитного профиля в опытном стаде северных оленей ненецкой породы // Междунар. вестник ветеринарии. 2023. № 3. С. 275–283. https://doi.org/10.52419/issn2072-2419.2023.3.275
  11. Сёмина М.Т., Каштанов С.Н., Бабаян О.В. и др. Анализ генетического разнообразия и популяционной структуры ненецкой аборигенной породы северных оленей на основе микросателлитных маркеров // Генетика. 2022. Т. 58. № 8. С. 954–966. https://doi.org/ 10.31857/S0016675822080069
  12. Kharzinova V.R., Dotsev A.V., Solovieva A.D. et al. Genome-wide SNP analysis reveals the genetic diversity and population structure of the domestic reindeer population (Rangifer tarandus) inhabiting the indigenous tofalarlands of southern Siberia // Diversity. 2022. V. 14. № 11. P. 900.
  13. Kholodova M.V., Baranova A.I., Mizin I.A. et al. A genetic predisposition to chronic wasting disease in the reindeer Rangifer tarandus in the Northern European part of Russia // Biology Bulletin. 2019. V. 46. P. 555–561. https://doi.org/10.1134/S1062359019060074
  14. Курбаков К.А., Коноров Е.А., Семина М.Т., Столповский Ю.А. Распространение ассоциированных с болезнью хронического изнурения аллелей гена PRNP у диких и домашних северных оленей Rangifer tarandus на территории России // Генетика. 2022. Т. 58. № 2. С. 163–168. https://doi.org/10.31857/S0016675822020102
  15. Keane O.M., Dodds K.G., Crawford A.M., McEwan J.C. Transcriptional profiling of Ovis aries identifies Ovar-DQA1 allele frequency differences between nematode-resistant and susceptible selection lines // Phy- siol. Genomics. 2007. V. 30. № 3. P. 253–261.
  16. Ye J., Coulouris G., Zaretskaya I. et al. Primer-BLAST: А tool to design target-specific primers for polymerase chain reaction // BMC Bioinformatics. 2012. V. 13. № 1. P. 1–11. https://doi.org/10.1186/1471-2105-13-134
  17. Kluesner M.G., Nedveck D.A., Lahr W.S. et al. EditR: A method to quantify base editing from Sanger sequen- cing // The CRISPR J. 2018. V. 1. № 3. P. 239–250. https://doi.org/10.1089/crispr.2018.0014
  18. Edgar R.C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput // Nucl. Acids Res. 2004. V. 32. № 5. P. 1792–1797. https://doi.org/10.1093/nar/gkh340
  19. Kumar S., Stecher G., Li M. et al. MEGA X: Мolecular evolutionary genetics analysis across compu- ting platforms // Mol. Biol. Evol. 2018. V. 35. № 6. P. 1547–1549. https://doi.org/10.1093/molbev/msy096
  20. Lê S., Josse J., Husson F. FactoMineR: Аn R pac- kage for multivariate analysis // J. Stat. Software. 2008. V. 25. P. 1–18. https://doi.org/ 10.18637/jss.v025.i01
  21. Svishcheva G., Babayan O., Sipko T. et al. Genetic differentiation between coexisting wild and domestic reindeer (Rangifer tarandus L. 1758) in Northern Eu- rasia // Genet. Resources. 2022. V. 3. № 6. P. 1–14. https://doi.org/10.46265/genresj.UYML5006

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences