Investigation of interaction of Co, Mn and Fe atoms with the calcite by X-ray photoelectron spectroscopy

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Adsorption of atoms of Co, Mn, Fe on the calcite surface in ultra-high vacuum and the interaction of the formed adsorption systems with the water have been studied by means of X-ray photoelectron spectroscopy. It is shown that Mn and Fe form solid solutions CaCO3/Mn(Fe)CO3 on the calcite surface, whereas Co preferentially forms CoO and Co3O4. Upon interaction with water the surface compounds formed by Mn and Fe do not undergo notable changes, unlike the Co oxides which partially transform into soluble hydroxylated complexes.

Full Text

Restricted Access

About the authors

T. T. Magkoev

Geophysical Institute of the Vladikavkaz Scientific Center of Russian Academy of Sciences; Department of Physics, North Ossetian State University

Author for correspondence.
Email: t_magkoev@mail.ru
Russian Federation, 93a, Markova str., Vladikavkaz, 362002; 44-46, Vatutina str., Vladikavkaz, 362025

V. B. Zaalishvili

Geophysical Institute of the Vladikavkaz Scientific Center of Russian Academy of Sciences

Email: t_magkoev@mail.ru
Russian Federation, 93a, Markova str., Vladikavkaz, 362002

O. G. Burdzieva

Geophysical Institute of the Vladikavkaz Scientific Center of Russian Academy of Sciences

Email: t_magkoev@mail.ru
Russian Federation, 93a, Markova str., Vladikavkaz, 362002

G. E. Tuaev

Geophysical Institute of the Vladikavkaz Scientific Center of Russian Academy of Sciences

Email: t_magkoev@mail.ru
Russian Federation, 93a, Markova str., Vladikavkaz, 362002

G. S. Grigorkina

Department of Physics, North Ossetian State University

Email: t_magkoev@mail.ru
Russian Federation, 44-46, Vatutina str., Vladikavkaz, 362025

References

  1. Гаcькова О.Л., Букаты М.Б., Шиpоноcова Г.П., Кабанник В.Г. (2009) Теpмодинамичеcкая модель cоpбции двуxвалентныx тяжелыx металлов кальцитом в пpиpодно-теxногенныx обcтановкаx. Геология и Геофизика 50(2), 115–126.
  2. Григоркина Г.С., Рамонова А.Г., Кибизов Д.Д., Fukutani K., Магкоев Т.Т. (2017) Взаимодействие молекул СО, NO и Н2 на поверхности металлооксидной системы Ni/MgO(111). Письма ЖТФ 43(13), 43–50.
  3. Таусон В.Л., Бабкин Д.Н., Пастушкова Т.М., Акимов В.В., Краснощекова Т.С., Липко С.В., Белозерова О.Ю. (2012) Двойственные коэффициенты распределения микроэлементов в системе “минерал–гидротермальный раствор”. II. Золото в магнетите. Геохимия 3, 251–270.
  4. Файзиев А.Р. и Гафуров Ф.Г. (2010) Элементы-примеси в кальцитах Дараипиезского щелочного массива. Геохимия (12), 1339–1344.
  5. Babar P.T., Lokhande A.C., Pawar B.S., Gang M.G., Jo E., Go C., Suryawanshi M.P., Pawarb S.M., Kim J.H. (2018) Electrocatalytic performance evaluation of cobalt hydroxide and cobalt oxide thin films for oxygen evolution reaction. Appl. Surf. Sci. 427(A), 253–259.
  6. Callagon J.E.R., Lee S.S., Eng P.J., Laanait N., Sturchioe N.C., Nagya K.L., Fenter P. (2017) Heteroepitaxial growth of cadmium carbonate at dolomite and calcite surfaces: Mechanisms and rates. Geochim. Cosmochim. Acta 205, 360–380.
  7. Chuang T.J., Brundle C.R., Rice D.W. (1976) Interpretation of the X-ray photoemission spectra of cobalt oxides and cobalt oxide surfaces. Surf. Sci. 59(2), 413–429.
  8. Garrels R.M. and Mackenzie F.T. (1971) Evolution of Sedimentary Rocks. New York: Norton, 397 p.
  9. González-López J., Fernández-González A., Jiménez A., Godelitsas A., Ladas S., Provatas G., Lagogiannis A., Pasias I.N., Nikolaos S. Thomaidis N.S., Prieto M. (2017) Dissolution and sorption processes on the surface of calcite in the presence of high Co2+ concentration. Minerals. 7(23), 1–10.
  10. Grosvenor A.P., Kobe B.A., Biesinger M.C., McIntyre N.S. (2004) Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds. Surf. Interface Anal. 36, 1564–1574.
  11. Grigorkina G.S., Ramonova A.G., Kibizov D.D., Kozyrev E.N., Zaalishvili V.B., Fukutani K., Magkoev T.T. (2017) Probing specific oxides as potential supports for metal/oxide model catalysts: MgO(111) polar film. Solid State Commun. 257, 16–19.
  12. Henderson M.A. (2002) The interaction of water with solid surfaces: fundamental aspects revisited. Surf. Sci. Reports. 46, 1–308.
  13. Hochella M.F. and White A.F. (1990) Mineral-Water Interface Geochemistry. Anaheim: American Mineralogical Society, 374 p.
  14. Ilton E.S., Post J.E., Heaney P.J., Ling F.T., Kerisit S.N. (2016) XPS determination of Mn oxidation states in Mn (hydr)oxides. Appl. Surf. Sci. 366, 475–485.
  15. Kornicker, W.A.; Morse, J.W.; Damasceno, R.N. (1985), The chemistry of Co2+ interaction with calcite and aragonite surfaces. Chem. Geol. 53, 229–236.
  16. Lang N.D. (1994) Density-functional studies of metal surfaces and metal-adsorbate systems. Surf. Sci. 299/300, 284–297.
  17. de Leeuw N.H, Parker S.C. (1998) Surface structure and morphology of calcium carbonate polymorphs calcite, aragonite, and vaterite: an atomistic approach. J. Phys. Chem. B. 102, 2914–2922.
  18. Magkoev T.T. (2007) Interaction of carbon monoxide and oxygen at the surface of inverse titania/Au model catalyst. Surf. Sci. 601, 3143–3148.
  19. Magkoev T.T., Christmann K., Moutinho A.M.C., Murata Y. (2002) Alumina vapour condensation on Mo(110) surface and adsorption of copper and gold atoms on the formed oxide layer. Surf. Sci. 515, 538–552.
  20. Moulder J.F., Stickle W.F., Sobol P.E., Bornben K.D. (1992) Handbook of X-ray Photoelectron Spectroscopy. Eden Prairie: Perkin-Elmer Corporation, Physical Electronics Division, 261 p.
  21. Peng M., Yin X., Tanner P.A., Liang C., Li P., Zhang Q., Qiu J. (2013) Orderly-layered tetravalent manganese-doped strontium aluminate Sr4Al14O25:Mn4+ J. Am. Ceram. Soc. 96, 2870–2876.
  22. Petitto S.C., Marsh E.M., Carson G.A., Langell M.A. (2008) Cobalt oxide surface chemistry: The interaction of CoO(1 0 0), Co3O4(1 1 0) and Co3O4(1 1 1) with oxygen and water. J. Molec. Catal. A: Chemical. 281, 49–58.
  23. de Poel W., Vaessen S.L., Drnec J., Engwerda A.H.J., Townsend E.R., Pintea S., de Jong A.E.F., Jankowski M., Carlà F., Felici R., Elemans J.A.A.W., van Enckevort W.J.P., Rowan A.E., Vlieg E. (2017) Metal ion-exchange on the muscovite mica surface. Surf. Sci. 665, 56–61.
  24. Reeder R.J. (1983) Carbonates: Mineralogy and Chemistry, Reviews in Mineralogy. Anaheim: American Mineralogical Society, 273 p.
  25. Rusanov A.I. (2005) Surface thermodynamics revisited. Surf. Sci. Reports. 58, 111–239.
  26. Wang S., Zhou G., Ma Y., Gao L., Song R., Jiang G., Lu G. (2016) Molecular dynamics investigation on the adsorption behaviors of H2O, CO2, CH4 and N2 gases on calcite (1 1- 0) surface. Appl. Surf. Sci. 385, 616–621.
  27. Xu M., Riechers S.L., Ilton E.S., Du Y., Kovarik L., Varga T., Arey B.W., Qafoku O., Kerisit S. (2017) Manganese-calcium intermixing facilitates heteroepitaxial growth at the (1014) calcite-water interface. Chem. Geol. 470, 152–163.
  28. Xu M., Ilton E.S., Engelhard M.H., Qafoku O., Felmy A.R., Kevin M. Rosso K.M., Kerisit S. (2015) Heterogeneous growth of cadmium and cobalt carbonate phases at the (1014) calcite surface. Chem. Geol. 397, 24–36
  29. Xu N., Hochella M.F., Jr., Brown G.E., Jr., Parks G.A. (1996) Co (II) sorption at the calcite-water interface: I. X-ray photoelectron spectroscopic study. Geochim. Cosmochim. Acta. 60, 2801–2815.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Review X-ray photoelectron spectrum of purified calcite, indicating the absence of foreign impurities.

Download (47KB)
3. Fig. 2. X-ray photoelectron line O 1s of pure calcite (spectrum 1), calcite with Co atoms deposited in ultra-high vacuum with a coating of 0.16 ML (spectrum 2) and 0.30 ML (spectrum 3). For the latter case, a component analysis of the O 1s line is given, indicating the formation of cobalt oxides of different stoichiometries.

Download (54KB)
4. Fig. 3. X-ray photoelectron lines of Co 2p3 / 2 during the adsorption of Co on the surface of an atomic-pure Cu (111) crystal (spectrum 1), the surface of calcite (spectrum 2) and after immersing Co / CaCO3 in water for 400 seconds (spectrum 3) Co is 0.30 ML. Spectrum 1 can in a good approximation be considered to correspond to metallic Co.

Download (69KB)
5. Fig. 4. Photoelectron lines Mn 2p during adsorption of manganese on the surface of calcite (spectrum 1, = 1.2 ML) and Cu (111) (spectrum 2, = 0.23 ML).

Download (98KB)
6. Fig. 5. Photoelectron spectra of Fe 2p for 3 iron monolayers on the surface of calcite at room temperature (spectrum 1) and after annealing at 420 K for 20 minutes (spectrum 2).

Download (89KB)
7. Fig. 6. Dependences of the Co and Mn coating deposited under ultrahigh vacuum on the surface of calcite on the time of contact with water.

Download (29KB)

Copyright (c) 2019 Russian Academy of Sciences