Investigation of interaction of Co, Mn and Fe atoms with the calcite by X-ray photoelectron spectroscopy

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

Adsorption of atoms of Co, Mn, Fe on the calcite surface in ultra-high vacuum and the interaction of the formed adsorption systems with the water have been studied by means of X-ray photoelectron spectroscopy. It is shown that Mn and Fe form solid solutions CaCO3/Mn(Fe)CO3 on the calcite surface, whereas Co preferentially forms CoO and Co3O4. Upon interaction with water the surface compounds formed by Mn and Fe do not undergo notable changes, unlike the Co oxides which partially transform into soluble hydroxylated complexes.

Texto integral

Acesso é fechado

Sobre autores

T. Magkoev

Geophysical Institute of the Vladikavkaz Scientific Center of Russian Academy of Sciences; Department of Physics, North Ossetian State University

Autor responsável pela correspondência
Email: t_magkoev@mail.ru
Rússia, 93a, Markova str., Vladikavkaz, 362002; 44-46, Vatutina str., Vladikavkaz, 362025

V. Zaalishvili

Geophysical Institute of the Vladikavkaz Scientific Center of Russian Academy of Sciences

Email: t_magkoev@mail.ru
Rússia, 93a, Markova str., Vladikavkaz, 362002

O. Burdzieva

Geophysical Institute of the Vladikavkaz Scientific Center of Russian Academy of Sciences

Email: t_magkoev@mail.ru
Rússia, 93a, Markova str., Vladikavkaz, 362002

G. Tuaev

Geophysical Institute of the Vladikavkaz Scientific Center of Russian Academy of Sciences

Email: t_magkoev@mail.ru
Rússia, 93a, Markova str., Vladikavkaz, 362002

G. Grigorkina

Department of Physics, North Ossetian State University

Email: t_magkoev@mail.ru
Rússia, 44-46, Vatutina str., Vladikavkaz, 362025

Bibliografia

  1. Гаcькова О.Л., Букаты М.Б., Шиpоноcова Г.П., Кабанник В.Г. (2009) Теpмодинамичеcкая модель cоpбции двуxвалентныx тяжелыx металлов кальцитом в пpиpодно-теxногенныx обcтановкаx. Геология и Геофизика 50(2), 115–126.
  2. Григоркина Г.С., Рамонова А.Г., Кибизов Д.Д., Fukutani K., Магкоев Т.Т. (2017) Взаимодействие молекул СО, NO и Н2 на поверхности металлооксидной системы Ni/MgO(111). Письма ЖТФ 43(13), 43–50.
  3. Таусон В.Л., Бабкин Д.Н., Пастушкова Т.М., Акимов В.В., Краснощекова Т.С., Липко С.В., Белозерова О.Ю. (2012) Двойственные коэффициенты распределения микроэлементов в системе “минерал–гидротермальный раствор”. II. Золото в магнетите. Геохимия 3, 251–270.
  4. Файзиев А.Р. и Гафуров Ф.Г. (2010) Элементы-примеси в кальцитах Дараипиезского щелочного массива. Геохимия (12), 1339–1344.
  5. Babar P.T., Lokhande A.C., Pawar B.S., Gang M.G., Jo E., Go C., Suryawanshi M.P., Pawarb S.M., Kim J.H. (2018) Electrocatalytic performance evaluation of cobalt hydroxide and cobalt oxide thin films for oxygen evolution reaction. Appl. Surf. Sci. 427(A), 253–259.
  6. Callagon J.E.R., Lee S.S., Eng P.J., Laanait N., Sturchioe N.C., Nagya K.L., Fenter P. (2017) Heteroepitaxial growth of cadmium carbonate at dolomite and calcite surfaces: Mechanisms and rates. Geochim. Cosmochim. Acta 205, 360–380.
  7. Chuang T.J., Brundle C.R., Rice D.W. (1976) Interpretation of the X-ray photoemission spectra of cobalt oxides and cobalt oxide surfaces. Surf. Sci. 59(2), 413–429.
  8. Garrels R.M. and Mackenzie F.T. (1971) Evolution of Sedimentary Rocks. New York: Norton, 397 p.
  9. González-López J., Fernández-González A., Jiménez A., Godelitsas A., Ladas S., Provatas G., Lagogiannis A., Pasias I.N., Nikolaos S. Thomaidis N.S., Prieto M. (2017) Dissolution and sorption processes on the surface of calcite in the presence of high Co2+ concentration. Minerals. 7(23), 1–10.
  10. Grosvenor A.P., Kobe B.A., Biesinger M.C., McIntyre N.S. (2004) Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds. Surf. Interface Anal. 36, 1564–1574.
  11. Grigorkina G.S., Ramonova A.G., Kibizov D.D., Kozyrev E.N., Zaalishvili V.B., Fukutani K., Magkoev T.T. (2017) Probing specific oxides as potential supports for metal/oxide model catalysts: MgO(111) polar film. Solid State Commun. 257, 16–19.
  12. Henderson M.A. (2002) The interaction of water with solid surfaces: fundamental aspects revisited. Surf. Sci. Reports. 46, 1–308.
  13. Hochella M.F. and White A.F. (1990) Mineral-Water Interface Geochemistry. Anaheim: American Mineralogical Society, 374 p.
  14. Ilton E.S., Post J.E., Heaney P.J., Ling F.T., Kerisit S.N. (2016) XPS determination of Mn oxidation states in Mn (hydr)oxides. Appl. Surf. Sci. 366, 475–485.
  15. Kornicker, W.A.; Morse, J.W.; Damasceno, R.N. (1985), The chemistry of Co2+ interaction with calcite and aragonite surfaces. Chem. Geol. 53, 229–236.
  16. Lang N.D. (1994) Density-functional studies of metal surfaces and metal-adsorbate systems. Surf. Sci. 299/300, 284–297.
  17. de Leeuw N.H, Parker S.C. (1998) Surface structure and morphology of calcium carbonate polymorphs calcite, aragonite, and vaterite: an atomistic approach. J. Phys. Chem. B. 102, 2914–2922.
  18. Magkoev T.T. (2007) Interaction of carbon monoxide and oxygen at the surface of inverse titania/Au model catalyst. Surf. Sci. 601, 3143–3148.
  19. Magkoev T.T., Christmann K., Moutinho A.M.C., Murata Y. (2002) Alumina vapour condensation on Mo(110) surface and adsorption of copper and gold atoms on the formed oxide layer. Surf. Sci. 515, 538–552.
  20. Moulder J.F., Stickle W.F., Sobol P.E., Bornben K.D. (1992) Handbook of X-ray Photoelectron Spectroscopy. Eden Prairie: Perkin-Elmer Corporation, Physical Electronics Division, 261 p.
  21. Peng M., Yin X., Tanner P.A., Liang C., Li P., Zhang Q., Qiu J. (2013) Orderly-layered tetravalent manganese-doped strontium aluminate Sr4Al14O25:Mn4+ J. Am. Ceram. Soc. 96, 2870–2876.
  22. Petitto S.C., Marsh E.M., Carson G.A., Langell M.A. (2008) Cobalt oxide surface chemistry: The interaction of CoO(1 0 0), Co3O4(1 1 0) and Co3O4(1 1 1) with oxygen and water. J. Molec. Catal. A: Chemical. 281, 49–58.
  23. de Poel W., Vaessen S.L., Drnec J., Engwerda A.H.J., Townsend E.R., Pintea S., de Jong A.E.F., Jankowski M., Carlà F., Felici R., Elemans J.A.A.W., van Enckevort W.J.P., Rowan A.E., Vlieg E. (2017) Metal ion-exchange on the muscovite mica surface. Surf. Sci. 665, 56–61.
  24. Reeder R.J. (1983) Carbonates: Mineralogy and Chemistry, Reviews in Mineralogy. Anaheim: American Mineralogical Society, 273 p.
  25. Rusanov A.I. (2005) Surface thermodynamics revisited. Surf. Sci. Reports. 58, 111–239.
  26. Wang S., Zhou G., Ma Y., Gao L., Song R., Jiang G., Lu G. (2016) Molecular dynamics investigation on the adsorption behaviors of H2O, CO2, CH4 and N2 gases on calcite (1 1- 0) surface. Appl. Surf. Sci. 385, 616–621.
  27. Xu M., Riechers S.L., Ilton E.S., Du Y., Kovarik L., Varga T., Arey B.W., Qafoku O., Kerisit S. (2017) Manganese-calcium intermixing facilitates heteroepitaxial growth at the (1014) calcite-water interface. Chem. Geol. 470, 152–163.
  28. Xu M., Ilton E.S., Engelhard M.H., Qafoku O., Felmy A.R., Kevin M. Rosso K.M., Kerisit S. (2015) Heterogeneous growth of cadmium and cobalt carbonate phases at the (1014) calcite surface. Chem. Geol. 397, 24–36
  29. Xu N., Hochella M.F., Jr., Brown G.E., Jr., Parks G.A. (1996) Co (II) sorption at the calcite-water interface: I. X-ray photoelectron spectroscopic study. Geochim. Cosmochim. Acta. 60, 2801–2815.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2019