Assessment of the age and conditions of metamorphism of high-pressure blastolites of the Gonzhinsky block of the Argun superterrane of the eastern part of the Central Asian folded belt

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

As a result of petrographic and thermobaric studies, 4 mineral associations were identified in the blastolite: relict, main, association corresponding to biotitisation and association of retrograde changes. The relict association probably represented eclogites The main mineral association corresponds to apoeclogite zoisite amphibolites. Determination of the P-T parameters of the formation of this association showed an interval of P = 13.0–15.0 kbar and T = 580-670 °C. At the same time, if we take the most ferruginous outer rim of amphibole-1 for calculations, then the P-T parameters shift to a higher temperature region of P = 13.0–17.0 kbar and T = 660-780 °C. The association corresponding to the imposed biotitisation is well structurally expressed. The lines of monomineral equilibria of the biotite association constructed from various combinations of garnet, biotite and plagioclase compositions showed good convergence in the local region corresponding to the interval P = 12.5-13.2 kbar and T = 810-830 °C. The last association of retrograde changes includes low-alumina amphibole-2.The association corresponding to the imposed biotitisation.ше is well structurally expressed. The last association of retrograde changes includes low-alumina amphibole-2. Based on the obtained isotopic data, a mineral Sm-Nd isochron was constructed for the rock, garnet and two amphiboles. The age of the isochron is 171 ± 3 million years, the latter is interpreted as the time of formation of the main mineral association and corresponds to its crystallization at the peak of metamorphism.

Full Text

Restricted Access

About the authors

M. M. Fugzan

V.I. Vernadsky Institute of Geochemistry and Analytical Chemistry of the RAS

Author for correspondence.
Email: fugzan@geokhi.ru
Russian Federation, Kosygina st., 19, Moscow, 119991

T. I. Kirnozova

V.I. Vernadsky Institute of Geochemistry and Analytical Chemistry of the RAS

Email: fugzan@geokhi.ru
Russian Federation, Kosygina st., 19, Moscow, 119991

V. M. Kozlovskiy

Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry, RAS

Email: fugzan@geokhi.ru
Russian Federation, Staromonetny lane, 35, building 7, Moscow, 109052

R. O. Ovchinnikov

Institute of Geology and Environmental Management, FEB RAS

Email: fugzan@geokhi.ru
Russian Federation, Relochny lane, 1, Blagoveshchensk, 675000

I. K. Kozakov

Institute of Geology and Geochronology of the Precambrian RAS

Email: ivan-kozakov@yandex.ru
Russian Federation, nab.Makarova, 2, St. Petersburg, 199034

References

  1. Бушмин С. А., Глебовицкий В. А. (2008) Схема минеральных фаций метаморфических пород Записки Российского Минералогического Общества. 139(2) 1–13.
  2. Ханчук А. И. (2006) Геодинамика, магматизм и металлогения востока России Владивосток: Дальнаука, 572 с.
  3. Котов А. Б., Мазукабзов А. М., Сковитина Т. М., Великославянский С. Д., Сорокин А. А., Сорокин А. П. (2013) Структурная эволюция и геодинамическая позиция Гонжинского блока (Верхнее Приамурье). Геотектоника. (5), 48-60.
  4. Овчинников Р. О., Сорокин А. А., Котов А. Б., Сальникова Е. Б., Ковач В. П., Сорокин А. П. (2019) Экзотический Инимский блок Аргунского континентального массива Центрально-Азиатского складчатого пояса: результаты U-Th-Pb геохронологических (LA-ICP-MS) и Sm-Nd изотопно-геохимических исследований. ДАН. 484(6), 734–738.
  5. Овчинников Р. О., Козловский В. М., Козаков И. К., Кирнозова Т. И., Фугзан М. М. (2022) Петрографические особенности, оценка возраста метаморфизма высокобарных бластолитов Гонжинского блока Аргунского супертеррейна восточной части Центрально-Азиатского складчатого пояса. Материалы VIII Российской конференции по изотопной геохронологии. Санкт-Петербург. 105–108.
  6. Парфенов Л. М., Берзин Н. А., Ханчук А. И., Бадарч Г., Беличенко В. Г., Булгатов А. Н., Дриль С. И., Кириллова Г. Л., Кузьмин М. И., Ноклеберг У., Прокопьев А. В., Тимофеев В. Ф., Томуртогоо О., Янь Х. (2003) Модель формирования орогенных поясов Центральной и Северо-Восточной Азии Тихоокеанская геология. 22(6), 7–41.
  7. Петрук Н. Н., Козлов С. А. (2009) Государственная геологическая карта Российской Федерации масштаба 1: 1 000000. Лист N-51 (Сковородино) (Под ред. Вольского А. С.). СПб. ВСЕГЕИ.
  8. Ревяко Н. М., Костицын Ю. А., Бычкова Я. В. (2012) Взаимодействие расплава основного состава с вмещающими породами при формировании расслоенного интрузива Кивакка, Северная Карелия. Петрология. 20(2), 115–135.
  9. Сальникова Е. Б., Котов А. Б., Ковач В. П., Великославинский С. Д., Джан Б.-М., Сорокин А. А., член-корреспондент РАН, Сорокин А. П., Ван К-Л., Чан С.-Л., Ли Х.-Я., Толмачева Е. В. (2012) О возрасте гонжинской серии (Аргунский террейн Центрально-Азиатского складчатого пояса): результаты U-Pb и Lu-Hf- изотопных исследований детритовых цирконов. ДАН. 444(5), 519–522.
  10. Смирнова Ю. Н., Сорокин А. А. (2019) Возраст и обстановки формирования чаловской серии Аргунского массива восточной части Центрально-Азиатского орогенного пояса. Стратиграфия. Геологическая корреляция. 27(3), 3–23.
  11. Шуркин К. А. (1957) Методическое руководство по геологическому картированию метаморфических комплексов / Лаборатория геологии докембрия Акад. наук СССР М.: Госгеолтехиздат 451.
  12. Aranovich L. Ya., Berman R. G. (1996) Optimized standart state and solution properties of minerals: II. Calculation of phase diagrams and geothermobarometry applications Contrib. Mineral. Petrol. 126, 5–7.
  13. Berman R. G. (1991) Thermobarometry using multiequilibrium calculations: a new technique with petrologic applications. Can. Mineral. 29, 833–855.
  14. Berman R. G., Aranovich L. Ya. (1996) Optimized standard state and solution properties of minerals I. Model calibration for olivine, orthopyroxene, cordierite, garnet, and ilmenite in the system FeO-MgO-CaO-Al2O3-TiO2-SiO2. Contrib. Mineral.Petrol. 126, 1–4.
  15. Ludwig K. R. (1999) ISOPLOT/eX – A geochronological toolkit for Microsoft Excel, Version 2.05. Berkeley Geochronology Center Special Publication, No 1a.
  16. Mader U. K., Berman R. G. (1992) Amphibole Thermobarometry: a Thermodynamic Approach Geological Survey of Canada. Geological Survey of Canada. Paper no. 92–1E, 393–400.
  17. Sorokin A. A., Zaika V. A., Kovach V. P., Kotov A. B., Xu W., Yang H. (2020) Timing of closure of the eastern Mongol-Okhotsk Ocean: Constraints from U-Pb and Hf isotopic data of detrital zircons from metasediments along the Dzhagdy Transect. Gondwana Research. 81(2) 58–78.
  18. Sorokin A. A., Zaika V. A., Kadashnikova A. Yu., Ponomar-chuk A. V., Travin A. V., Ponomarchuk V. A., Buchko I. V. (2023) Mesozoic thermal events and related gold mineralization in the еastern Mongol-Okhotsk Orogenic Belt: constraints from regional geology and 40Ar/39Ar dating. Int. Geol. Rev. 65(9), 1476–1499.
  19. Tanaka T., Togashi S., Kamioka H. et al. (2000) JNdi-1: a neodymium isotopic reference in consistency with LaJolla neodymium. Chem. Geol. 168(3–4), 279–281.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The main tectonic elements of the eastern part of the Central Asian Oblast using (Parfenov et al., 2004).

Download (418KB)
3. Rice. 2. Pseudomorphoses of amphibole-1 after clinopyroxene in apoomphacite decay structures.

Download (252KB)
4. Fig. 3. Zoned garnet, garnet-zoisite-quartz-amphibole blastolites. In the central part of the grains, high-magnesian garnet-1 of the eclogite association is preserved; at the edges, at the contact with amphibole-1, an iron zone of garnet-2 is formed in the garnet.

Download (304KB)
5. Fig. 4. Heterogeneous crystal of amphibole garnet-zoisite-quartz-amphibole blastolites. The main part of the amphibole-1 crystal is composed of more magnesian pargasite, the marginal zone adjacent to the garnet is ferruginous pargasite. In the central part of the grain at the contact with plagioclase is a reaction zone composed of amphibole-2 – magnesian hornblende.

Download (306KB)
6. Fig. 5. Low-magnesian amphibole-1 heals cracks in garnet-1. Near cracks in garnet-1, more ferruginous garnet-2 is formed. Chlorite in cracks is a probable pseudomorphism in amphibole-1.

Download (296KB)
7. Fig. 6. Lines of monovariant equilibria reflecting the conditions of formation of the main (amphibole) mineral association of biotitized garnet-zoisite-quartz-amphibole blastolites:

Download (148KB)
8. Fig. 7. Thin-plate “herringbone” crystals of biotite in joint intergrowths with plagioclase-2. Garnet-3 is the outer part of large zoned grains of garnet-1 and 2, participating in biotite-plagioclase intergrowths.

Download (302KB)
9. Fig. 8. Lines of monovariant equilibria reflecting the conditions of formation of the association of superimposed biotitization of biotitized garnet-zoisite-quartz-amphibole blastolites:

Download (159KB)
10. Fig. 9. Sm–Nd mineral isochron garnet-zoisite-quartz-amphibole blastolite.

Download (85KB)

Copyright (c) 2024 Russian Academy of Sciences