Standard enthalpy of formation kesterite Cu2ZnSnS4

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

The standard enthalpy of kesterite formation (Cu2ZnSnS4) is calculated from the calorimetric determinations of the enthalpy of its formation from simple sulphides: 2CuS + ZnS + SnS → Cu2ZnSnS4 using literature data on the standard enthalpies of the formation of simple sulphides. As a result, the standard enthalpy of kesterite formation was determined: ΔfHo298.15 (Cu2ZnSnS4) = -(467.62±2.28) kJ mol-1.

Texto integral

Acesso é fechado

Sobre autores

T. Stolyarova

Institute of Experimental Mineralogy, Russian Academy of Sciences

Autor responsável pela correspondência
Email: euo@iem.ac.ru
Rússia, 4, Academica Osypyana str., Chernogolovka, Moscow region, 142432

E. Osadchii

Institute of Experimental Mineralogy, Russian Academy of Sciences

Email: euo@iem.ac.ru
Rússia, 4, Academica Osypyana str., Chernogolovka, Moscow region, 142432

A. Baranov

Institute of Experimental Mineralogy, Russian Academy of Sciences; Lomonosov Moscow State University

Email: euo@iem.ac.ru
Rússia, 4, Academica Osypyana str., Chernogolovka, Moscow region, 142432; 1, Leninskie gory, Moscow, 119991

Bibliografia

  1. Васильев Я.В., Соболева М.С. (1962) Калориметр для определения теплот высокотемпературных процессов. Ж. физ. Химии 36, 907–909.
  2. Иванов, В.В., Пятенко, Ю.А. (1959). О так называемом кестерите. Зап. Всес. минерал. об-ва 88(2), 165–168.
  3. Налимов В.В. (1960) Применение математической статистики при анализе вещества. М.: Наука, 354 с.
  4. Осадчий Е.Г., Сорокин В.И. (1989) Станнинсодержащие сульфидные системы. М.: Наука, 136 с.
  5. Столярова Т.А., Баранов А.В., Осадчий Е.Г. (2018) Калориметрическое определение стандартной энтальпии образования станнина (Cu2FeSnS4). Геохимия (1), 82–85.
  6. Флейшер Л.Л., Столярова Т.А. (1978) Автоматизация процесса измерения электрической энергии высокотемпературной калориметрической установки. Измерительная техника 2, 60–61.
  7. Bernardini G. P., Bonazzi P., Corazza M., Corsini F., Mazzetti G., Poggi L.,Tanelli G. (1990). New data on the Cu2FeSnS4-Cu2ZnSnS4 pseudobinary system at 750 and 550 С. European Journal of Mineralogy. 2(2), 219–225.
  8. Cemie L., Kleppa O.J. (1988) High temperature calorimetry of sulfide systems. Physics and chemistry of minerals. 16(2), 172–179.
  9. Chichagov A.V., Osadchii Eu.G., Usyakovskaya Z.V. (1986) X-ray analysis of the solid solution Cu2Zn1-xCdxSnS4. Neues Jahrbuch Miner. Abh. 155(1), 15–22.
  10. Nekrasov I.J., SorokinV.I., Osadchii E.G. (1979) Fe and Zn partitioning between stannite and sphalerite and its application in geothermometry. Origin and distribution of the elements (Ed. Ahrens, L.N.). Oxford, New York: Pergamon Press, 739–742.
  11. Osadchii E.G. (1996) Kesterite–sphalerite geothermometer and physicochemical conditions of cassiterite–polymetallic deposit formation in the Dachang ore field (P.R. China), Geology of Ore Deposits. 38(3), 197–207.
  12. Robie R.A., Hemingway B.S. (1995) Thermodynamic properties of minerals and substances at 298.15 and 1 Bar (105 Pascals) pressure and at higher temperatures. U.S. geological survey Bull. 2131, 461.
  13. Schäfer W., Nitsche R. (1974). Tetrahedral quaternary chalcogenides of the type Cu2–II–IV–S4(Se4). Materials Research Bulletin. 9(5), 645–654.
  14. Wallace S. K., Mitzi D. B., Walsh A. (2017). The Steady Rise of Kesterite Solar Cells. ACS Energy Letters. 2(4), 776–779.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2019