From Kenorland to modern continents: tectonics and metallogeny

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

There are three stages in tectonic evolution of the Earth: (1) nucleation — from origin of protocratons to their assembly into Supercontinent Kenorland (2.7–2.5 Ga); (2) cratonization — from breakup of Kenorland (2.45 Ga) to the assembly of Columbia (1.85 Ga) and its reorganization into Rodinia (1.0–0.72 Ga); (3) modern plate tectonics — from breakup of Rodinia at 720 Ma until present. Analysis of time-space reorganizations of Archean granulite-gneiss terranes, which correspond to continental lithospheric keels, reveals five groups of protocratons (Nena, Ur, Congo-Sahara, NAsia and Atlantica) that remained almost intact during long time intervals.

After the breakup of Kenorland, the continental crust rotated counter-clockwise. NAsia and Atlantica the least rotated and drifted relative to Nena, however the latter was rotated by 180°. Congo-Sahara, Ur and Kalahari were the most rotated. The assembly and breakup of the supercontinents clearly correlates with secular changes in dominant types of base, precious and ferrous metal deposits, as well as formation and emplacement of diamonds.

Full Text

Restricted Access

About the authors

A. S. Yakubchuk

Geological Institute, Russian Academy of Sciences 

Author for correspondence.
Email: slaurum@aol.com
Russian Federation, 7, Pyzhevsky lane, Moscow, 119017

References

  1. Пучков В.Н. Геология Урала и Предуралья (актуальные проблемы стратиграфии, тектоники, геодинамики и металлогении). Уфа: ДизайнПолиграфСервис, 2010. 280 с.
  2. Розен O.M., Манаков А.В., Зинчук Н.Н. Сибирский кратон: формирование, алмазоносность. М.: Научный Мир, 2006. 212 с.
  3. Abdelsalam M.G., Liegeois J.-P., Stern R.J. The Saharan metacraton // J. of African Earth Sciences. 2002. Vol. 34. P. 119–136.
  4. Artemieva I.M. Global 1o×1o thermal model TC1 for the continental lithosphere: implications for lithosphere secular evolution // Tectonophysics. 2006. Vol. 416. P. 245–277.
  5. Aspler L.B., Chiarenzelli J.R. Two Neoarchean supercontinents? Evidence from the Paleoproterozoic // Sedimentary Geology. 1998. Vol. 120. P. 75–104.
  6. Barnes S.-J., Lightfoot P.C. Formation of magmatic nickel sulfide ore deposits and processes affecting their copper and platinum group elements contents // Economic Geology 100th Anniversary Volume / J.W. Hedenquist, J.F.H. Thompson, R.J. Goldfarb, J.P. Richards (eds). Littleton: Society of Economic Geologists, 2005. P. 179–214.
  7. Barreiro J.G., Catalán J.R.M., Arenas R., Ca stiñeiras P., Abati J., García F.D., Wijbrans J.R. Tectonic evolution of the upper allochthon of the Órdenes complex (northwestern Iberian Massif): Structural constraints to a po lyorogenic peri-Gondwanan terrane // GSA Special Papers, 2007. Vol. 423. P. 315–332.
  8. Barrie C.T., Hannington M.D. Classification of volcanic-associated massive sulfide deposits based on host rock composition // Volcanic-associated massive sulphide deposits: progresses and examples in modern and ancient settings / C.T. Barrie, M.D. Hunnington (eds). Society of Economic Geologists. Littleton: Reviews in Economic Geology 1999. Vol. 8. P. 8–12.
  9. Bekker A., Slack J.F., Planavsky N., Krapež B., Hofmann A., Konhauser K.O., Rouxel O.J. Iron Formation: The Sedimentary product of a complex interplay among mantle, tectonic, oceanic, and biospheric processes // Economic Geology. 2010. Vol. 105. P. 467–508.
  10. Betts P.G., Giles D., Aitken A. Palaeoproterozoic accretion processes of Australia and comparisons with Laurentia // International Geology Review. 2011. Vol. 53. P. 1357–1376.
  11. Bleeker W. The late Archean record: a puzzle in ca. 35 pieces // Lithos. 2003. Vol. 71. P. 99–134.
  12. Bleeker W., Ernst R. Short-lived mantle-generated mamatic events and their dyke swarms: the key unlocking Earth’s paleogeographic record back to 2.6 Ga // Dyke swarms — time markers of crustal evolution / E. Hanski, S. Mertanen, T. Ramo, J. Vuollo (eds). London: Taylor and Francis, 2006. P. 3–26.
  13. Bogdanova S.V., Bingen B., Gorbatschev R., Kheraskova T.N., Kozlov V.I., Puchkov V.N., Volozh Yu.A. The East European Craton (Baltica) before and during the assembly of Rodinia // Precambrian Research. 2008. Vol. 160. P. 23–45.
  14. Boger S.D. Antarctica — before and after Gondwana // Gondwana Research. 2011. Vol. 19. P. 335–371.
  15. Burrows D.R., Lesher C.M. Copper-Rich Magmatic Ni-Cu-PGE Deposits // Geology and genesis of major copper deposits and districts / J.W. Hedenquist, M. Harris, F. Camus (eds). Littleton: Society of Economic Geologists, 2012. P. 515–552.
  16. Cawthorn R.G., Barnes S.J., Ballhaus C., Ma litch K. Platinum group element, chromium, and vanadium deposits in mafic and ultramafic rocks // Economic Geology 100th Anniversary Volume / J.W. Hedenquist, J.F.H. Thompson, R.J. Goldfarb, J.P. Richards (eds). Littleton: Society of Economic Geologists, 2005. P. 215–250.
  17. Cocks L.R.M., Torsvik T.H. Earth geography from 500 to 400 million years ago: a faunal and palaeomagnetic review // J. of the Geological Society London. 2002. Vol. 159. P. 631–644.
  18. Condie K. Supercontinent and superplume events: Distinguishing signals in the geologic record // Physics of the Earth and Planetary Interiors. 2004. Vol. 146. P. 319–322.
  19. Coney P.J., Jones D.L., Monger J.W.H. Cordilleran suspect terranes // Nature. 1980. Vol. 288. P. 329–333.
  20. Coney P.J., Edwards A., Hine R., Morrison F., Windrim D. The regional tectonics of the Tasman orogenic system, eastern Australia // J. of Structural Geology. 1990. Vol. 13 (5–6). P. 519–543.
  21. Cordani U.G., Pimentel M.M., de Araújo C.E.G., Fuck R.A. The significance of the Transbrasiliano-Kandi tectonic corridor for the amalgamation of West Gondwana // Brazilian J. of Geology. 2013. Vol. 43. No 3. P. 583–597.
  22. Cuney M. Evolution of uranium fractionation processes through time: driving the secular variation of uranium deposit types // Economic Geology. 2010. Vol. 105. P. 553–569.
  23. Davies G.F. On the emergence of plate tectonics // Geology. 1992. Vol. 20. P. 963–966.
  24. de Witt M.J. On Archean granites, greenstones, cratons and tectonics; does the evidence demand a verdict? // Precambrian Research. 1998. Vol. 91. P. 181–226.
  25. de Witt M.J., Thiart C. Metallogenic scents of Archean cratons: changing patterns of mineralization during earth evolution // Transactions of the Institute of Mining and Metallurgy. 2003. Vol. 112. B114–116.
  26. Degtyarev K., Yakubchuk A., Tretyakov A., Kotov A., Kovach V. Precambrian geology of the Kazakh Uplands and Tien Shan: an overview // Gondwana Research. 2017. Vol. 47. P. 44–75.
  27. Ernst R.E., Hamilton M.A., Soderlund U., Ha nes J.A., Gladkochub D.P., Okrugin A.V., Kolotilina T., Mekhonoshin A.S., Bleeker W., LeCheminant A.N., Buchan K.L., Chamberlain K.R., Didenko A.N. Long-lived connection between southern Siberia and northern Laurentia in the Proterozoic // Nature Geoscience. 2016. Vol. 9. P. 464–469.
  28. Evans D.A.D. True polar wander and supercontinents // Tectonophysics. 2003. Vol. 362. P. 303–320.
  29. Evans D.A.D., Pisarevsky D. Plate tectonics on early Earth? Weighing the paleomagnetic evidence // When Did Plate Tectonics Begin on Planet Earth? / K.C. Condie, V. Pease (eds). Geological Society of America Special Paper. 2008. Vol. 440. P. 249–263.
  30. Franklin J.M., Gibson H.L., Jonasson I.R., Galley A.G. Volcanogenic massive sulfide deposits // Economic Geology 100th Anniversary Volume / J.W. Hedenquist, J.F.H. Thompson, R.J. Goldfarb, J.P. Richards (eds). Littleton: Society of Economic Geologists, 2005. P. 523–560.
  31. Fritz H., Abdelsalam M., Ali K.A., Bingen B., Collins A.S., Fowler A.R., Ghebreab W., Hauzenberger C.A., Johnson P.R., Kusky T.M., Macey P., Muhongo S., Stern R.J., Viola G. Orogen styles in the East African Orogen: A review of the Neoproterozoic to Cambrian tectonic evolution // J. of African Earth Sciences. 2013. Vol. 86. P. 65–106.
  32. Furnes H., de Wit M., Dilek Y. Four billion years of ophiolites reveal secular trends in oceanic crust formation // Geoscience Frontiers. 2014. Vol. 5. P. 571–603.
  33. Gehrels G.E., Yin A., Wang X.-F. Detrital-zircon geochronology of the northeastern Tibetan plateau // Geological Society of America Bulletin. 2003. Vol. 115 (7). P. 881–896.
  34. Goldfarb R.J., Baker T., Dube B., Groves D.I., Hart C.J.R., Gosselin P. Distribution, character, and genesis of gold deposits in metamorphic terranes // Economic Geology 100th Anniversary Volume / J.W. Hedenquist, J.F.H. Thompson, R.J. Goldfarb, J.P. Richards (eds). Littleton: Society of Economic Geologists, 2005. P. 407–450.
  35. Goldfarb R.J., Bradley D., Leach D.L. Secular variation in economic geology // Economic Geology. 2010. Vol. 105. P. 459–465.
  36. Groves D.I., Vielreicher R.M., Goldfarb R.J., Condie K.C. Controls on the heterogenous distribution of mineral deposits through time // Mineral deposits and earth evolution / I. McDonald, A.J. Boyce, I.B. Butler, R.J. Herrington, D.A. Polya (eds). Geol. Soc. London Special Publication. 2005. Vol. 248. P. 71–101.
  37. Gurney J.J., Helmstaedt H.H., Richardson S.H., Shirey S.B. Diamonds through time // Economic Geology. 2010. Vol. 105. P. 689–712.
  38. Hall R. Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: computer-based reconstructions, model and animations // J. of Asian Earth Sciences. 2002. Vol. 20. P. 353–434.
  39. Halls H.C., Kumar A., Srinivasan R., Hamilton M.A. Paleomagnetism and U-Pb geochronology of easterly trending dykes in the Dharwar craton, India: feldspar clouding, radiating dyke swarms and the position of India at 2.37 Ga // Precambrian Research. 2007. Vol. 155. P. 47–68.
  40. Harley S.L., Fitzsimmons I.C.W., Zhao Y. Antarctica and supercontinent evolution: historical perspectives, recent advances and unresolved issues // Antarctica and supercontinent evolution / S.L. Harley, I.C.W. Fitzsimmons, Y. Zhao (eds). Geol. Soc. London Special Publication. 2013. Vol. 383. P. 1–34.
  41. Hitzman M.W., Selley D., Bull S. Formation of sedimentary rock-hosted stratiform copper deposits through Earth history // Economic Geology. 2010. Vol. 105. P. 627–639.
  42. Hoffman P.F. United Plates of America, the birth of a craton // Annual Reviews of Earth Planetary Science. 1988. Vol. 16. P. 543–604.
  43. Huang B., Xu B., Zhang C., Li Y., Zhu R. Paleomagnetism of the Baiyisi volcanic rocks (ca. 740 Ma) of Tarim, Northwest China: A continental fragment of Neoproterozoic Western Australia? // Precambrian Research. 2005. Vol. 142. P. 83–92.
  44. Isley A.E., Abbott D.H. Plume-related mafic volcanism and the deposition of banded iron formation // J. of Geophysical Research. 1999. Vol. 104. P. 15461–15477.
  45. Johansson Å. From Rodinia to Gondwana with the ‘SAMBA’ model — A distant view from Baltica towards Amazonia and beyond // Precambrian Research. 2014. Vol. 244. P. 226–235.
  46. Kerrich R., Goldfarb R., Richards J.P. Metallogenic provinces in an evolving geodynamic framework // Economic Geology 100th Anniversary Volume / J.W. Hedenquist, J.F.H. Thompson, R.J. Goldfarb, J.P. Richards (eds). Littleton: Society of Economic Geologists, 2005. P. 1097–1136.
  47. Krӧner A. Evolution of the Archean continental crust // Annual Review Earth Planetary Sciences. 1985. Vol. 13. P. 49–74.
  48. Kusky T.M. Geophysical and geological tests of tectonic models of the North China Craton // Gondwana Research. 2011. Vol. 20. P. 26–35.
  49. Large R.R., Bull S.W., McGoldrick P.J., Derrick G., Carr G., Walters S. Stratiform and strata-bound Zn-Pb-Ag deposits of the Proterozoic sedimentary basins of northern Australia // Economic Geology 100th Anniversary Volume / J.W. Hedenquist, J.F.H. Thompson, R.J. Goldfarb, J.P. Richards (eds). Littleton: Society of Economic Geologists, 2005. P. 931–963.
  50. Lawver L.A., Dalziel I.W.D., Norton I.O., Gaha gan L.M. The PLATES 2009 Atlas of Plate Reconstructions (750 Ma to Present Day), PLATES Progress Report No 325–0509, University of Texas Technical Report No 196, 2009. 156 p. http://www.ig.utexas.edu/research/projects/plates/recons.htm
  51. Li Z.X., Bogdanova S.V., Collins A., Davidson A., De Waele B., Ernst R.E., Fitzsimons I., Fuck R., Gladkochub D., Jacobs J., Karlstrom K., Lu S., Milesi J.-P., Myers J., Natapov L., Pandit M., Pease V., Pisarevsky S.A., Thrane K., Vernikovsky V. Assembly, configuration, and break-up history of Rodinia: a synthesis // Precambrian Research. 2008. Vol. 160. P. 179–210.
  52. Maier W.D., Groves D.I. Temporal and spatial controls on the formation of magmatic PGE and Ni–Cu deposits // Mineralium Deposita. 2011. Vol. 46 (8). P. 841–857. doi: 10.1007/s00126-011-0339-6
  53. Malone S.J. Tectonic evolution of northern Ellesmere Island: insights from the Pearya Terrane, Ellesmerian Clastic Wedge and Sverdrup Basin // PhD (Doctor of Philosophy) thesis, University of Iowa, 2012. 296 p. http://ir.uiowa.edu/etd/3496
  54. McMenamin M.A.S., McMenamin D.L.S. The emergence of animals: the Cambrian breakthrough. New York: Columbia University Press, 1990. 217 p.
  55. Metcalfe I. Gondwana dispersion and Asian accretion: Tectonic and palaeogeographic evolution of eastern Tethys // J. of Asian Earth Sciences. 2013. Vol. 66. P. 1–33.
  56. Metelkin D.V., Vernikovsky V.A., Matushkin N. Yu. Arctida between Rodinia and Pangea // Precambrian Research. 2015. Vol. 259. P. 114–129.
  57. Mpodozis C., Cornejo P. Cenozoic tectonics and porphyry copper systems of the Chilean Andes. // Geology and genesis of major copper deposits and districts / J.W. Hedenquist, M. Harris, F. Camus (eds). Littleton: Society of Economic Geologists, 2012. P. 329–360.
  58. Mudd G.M., Jowitt S.M. A detailed assessment of global nickel resource trends and endowments // Economic Geology. 2014. Vol. 109. P. 1813–1841.
  59. Murphy J.B., Nance R.D. Supercontinents and the origin of mountain belts // Scientific American. 1992. Vol. 266 (4). P. 873–876.
  60. Nakano N., Osanai Y., Owada M., Nam T.N., Charusiri P., Khamphavong K. Tectonic evolution of high-grade metamorphic terranes in central Vietnam: Constraints from large-scale monazite geochronology // J. of Asian Earth Sciences. 2013. Vol. 73. P. 520–539.
  61. Nam T.N., Toriumu M., Sano Y., Terada K., Thang T.T. 2.9, 2.36, and 1.96 Ga zircons in orthogneiss south of the Red River shear zone in Viet Nam: evidence from SHRIMP U–Pb dating and tectonothermal implications // J. of Asian Earth Sciences. 2003. Vol. 21. P. 743–753.
  62. Nance R.D., Gutierrez-Alonso G., Keppie J.D., Linnemann U., Murphy J.B., Quesada C., Strachan R.A., Woodcock N.H. A brief history of the Rheic Ocean // Geoscience Frontiers. 2012. Vol. 3 (2). P. 125–135.
  63. Nelson J.L., Colpron M., Israel S. The Cordillera of British Columbia, Yukon, and Alaska: Tectonics and Metallogeny // Tectonics, metallogeny and discovery: the North American Cordillera and similar accretionary settings / M. Colpron, T. Bissig, B.G. Rusk, J.F.H. Thompson (eds). Society of Economic Geologists, 2013. P. 53–109.
  64. Nikishin A.M., Malyshev N.A., Petrov E.I. Geological structure and history of the Arctic Ocean. EAGE Publication. 2014. 122 p.
  65. Nikishin A.M., Ziegler P.A., Stephenson R.A., Cloetingh S.A.P.L., Furne A.V., Fokin P.A., Ershov A.V., Bolotov S.N., Korotaev M.V., Alekseev A.S., Gorbachev V.I., Shipilov E.V., Lankrejer A., Bembinova E.Yu., Shalimov I.V. Late Precambrian to Triassic history of the East European craton: dynamics of sedimentary basin evolution // Tectonophysics. 1996. Vol. 268. P. 23–63.
  66. Pease V., Percival J., Smithies H., Stevens G., van Kranendonk M. When did plate tectonics begin? Evidence from the orogenic record // Geological Society of America Special Papers. 2008. Vol. 440. P. 199–228.
  67. Perello J., Sillitoe R.H., Yakubchuk A.S., Valencia V.A., Cornejo P. Age and tectonic setting of the Udokan sediment-hosted copper-silver deposit, Transbaikalia, Russia // Ore Geology Reviews. 2016. Vol. 86. P. 856–866.
  68. Pesonen L.J., Mertanen S., Veikkolainen T. Paleo- Mesoproterozoic supercontinents — a paleomagnetic view // Geophysica. 2012. Vol. 48 (1–2). P. 5–47.
  69. Piper J.D.A. The Neoproterozoic supercontinent: Rodinia or Paleopangaea? // Earth and Planetary Science Letters. 2000. Vol. 176. P. 131–146.
  70. Pisarevsky S.A., Elming S.-Å., Pesonen L.J., Li Z.-X. Mesoproterozoic paleogeography: Supercontinent and beyond // Precambrian Research. 2014. Vol. 244. P. 207–225.
  71. Pollack H.N. Thermal characteristics of the Archaean // Greenstone belts / M.J. de Witt, L.D. Ashwal (eds) Oxford: Clarendon Press, 1997. P. 223–232.
  72. Rapela C.W., Fanning C.M., Casquet C., Pankhurst R.J., Spalletti L., Poire D., Baldo E.G. The Rio de la Plata craton and the adjoining Pan-African/Brasiliano terranes: their origins and incorporation into south-west Gondwana // Gondwana Research. 2011. Vol. 20. P. 674–690.
  73. Richards J. Tectonic, magmatic, and metallogenic evolution of the Tethyan orogen: from subduction to collision // Ore Geology Reviews. 2015. Vol. 70. P. 323–345.
  74. Roberts N.M.W., Spencer C.J. The zircon archive of continent formation through time // Continent formation through time / N.M.W. Roberts, M. van Kranendonk, S. Parman, S. Shirey, R.D. Clift (eds). Geological Society London Special Publication 389, 2014. http://dx.doi.org/10.1144/SP389.14
  75. Rogers J.J.W. A history of continents in the past three billion years // J. of Geology. 1996. Vol. 104. P. 91–107.
  76. Rogers J.J.W., Santosh M. Configuration of Columbia, a Mesoproterozoic supercontinent // Gondwana Research. 2002. Vol. 5. P. 5–22.
  77. Santosh M., Maruyama S., Yamamoto S. The making and breaking of supercontinents: Some speculations based on superplumes, super downwelling and the role of tectosphere // Gondwana Research. 2009. Vol. 15. P. 324–341.
  78. Sawkins F.J. Metal deposits in relation to plate tectonics. Berlin: Springer Verlag, 1984. 282 p.
  79. Scotese C. Paleomap project 2003. Available at www.scotese.com
  80. Sears J.W., Price R.A. New look at the Siberian connection: No SWEAT // Geology. 2000. Vol. 28. P. 423–426.
  81. Sengor A.M.C., Natal’in B.A. Paleotectonics of Asia — fragments of a synthesis // The tectonic evolution of Asia / A. Yin, T.M. Harrison (eds). Cambridge: Cambridge University Press, 1996. P. 486–640.
  82. Sevastjanova I., Clements B., Hall R., Belousova E.A., Griffin W.L., Pearson N. Granitic magmatism, basement ages, and provenance indicators in the Malay Peninsula: Insights from detrital zircon U–Pb and Hf-isotope data // Gondwana Research. 2011. Vol. 19. P. 1024–1039.
  83. Singer D.A. World class base and precious metal deposits a quantitative analysis // Economic Geology. 1995. Vol. 90. P. 88–104.
  84. Singer D.A., Berger V.I., Moring B.C. Porphyry copper deposits of the world: Database and grade and tonnage models. U.S. Geological Survey Open-File Report 2008–1155. http://pubs.usgs.gov/of/2008/1155
  85. Sillitoe R.H. Copper Provinces // Geology and Genesis of Major Copper Deposits and Districts of the World: A Tribute to Richard H. Sillitoe. / J.W. Hedenquist, M. Harris, F. Camus (eds). Littleton: Society of Economic Geologists, 2012. P. 1–18.
  86. Smith K. Supercontinent Amasia to take North Pole Position // Nature. 2012. Vol. 9. No 4. doi: 10.1038/nature.2012.9996
  87. Stampfli G.M., Hochard C., Vérard C., Wilhem C., von Raumer J. The formation of Pangea // Tectonophysics. 2013. Vol. 593. P. 1–19.
  88. Stampfli G.M., von Raumer J., Wilhem C. The distribution of Gondwana-derived terranes in the early Paleozoic // Ordovician of the World / J.C. Gutiérrez-Marco, I. Rábano, D. García-Bellido (eds). Madrid: Cuadernos del Museo Geominero, Instituto Geológico y Minero de España, 2011. P. 567–574.
  89. Stern R.J. Evidence from ophiolites, blueschists, and ultrahigh-pressure metamorphic terranes that the modern episode of subduction tectonics began in Neoproterozoic time // Geology. 2005. Vol. 33 (7). P. 557–560.
  90. Teixeira W., Sabate P., Barbosa J., Noce C.M., Carneiro M.A. Archean and Paleoproterozoic tectonic evolution of the São Francisco craton, Brazil // Tectonic evolution of South America / U.G. Cordiani, E.J. Milani, A. Thomaz Filho, D.A. Campos (eds). Rio de Janeiro: 31st International Geological Congress, 2000. P. 101–137.
  91. Torsvik T.H., Cocks L.R.M. Earth geography from 400 to 250 Ma: a palaeomagnetic, faunal and facies review // J. of the Geological Society London. 2004. Vol. 161. P. 555–572.
  92. Weil A.B., Van der Voo R., MacNiocall C., Meert J.G. The Proterozoic supercontinent Rodinia: paleomagnetically derived reconstructions for 1100 to 800 Ma // Earth and Planetary Science Letters. 1998. Vol. 154. P. 13–24.
  93. Wilde S.A., Zhao G., Sun M. Development of the North China craton during the Late Archaean and its final amalgamation at 1.8 Ga: some speculations on its position within a global palaeoproterozoic supercontinent // Gondwana Research. 2002. Vol. 5. P. 85–94.
  94. Yakubchuk A. Restoring the supercontinent Columbia and tracing its fragments after its breakup: A new configuration and a Super-Horde hypothesis // J. of Geodynamics. 2010. Vol. 50. P. 166–175.
  95. Yakubchuk A. Evolution of the Central Asian orogenic supercollage since Late Neoproterozoic revised again // Gondwana Research. 2017. Vol. 47. P. 372–398.
  96. Yakubchuk A., Degtyarev K., Maslennikov V., Wurst A., Stekhin A., Lobanov K. Tectonomagmatic settings, architecture, and metallogeny of the Central Asian copper province // Geology and genesis of major copper deposits and districts of the world / J.W. Hedenquist, M. Harris, F. Camus, (eds). Littleton: Society of Economic Geologists, 2012. P. 403–432.
  97. Zhao G., Cawood P.A., Wilde S.A., Sun M. Review of global 2.1–1.8 Ga collisional orogens and accreted cratons: a pre-Rodinia supercontinent? // Earth-Science Reviews. 2002. Vol. 59. P. 125–162.
  98. Ziegler P. Evolution of Laurussia: a study in late Paleozoic tectonics. Dordrecht/Boston: Kluwer Academic Publishers, 1989. 100 p.
  99. Zonenshain L.P., Kuzmin M.I., Natapov L.M. Geology of the USSR: A plate tectonic synthesis // American Geophysical Union Geodynamics Series Monograph. 1990. Vol. 21. 242 p.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Age provinces of continental crust (using data [2, 7, 20, 31, 38, 43, 53, 60, 61, 63, 66, 82, 96, 99, 100]).

Download (337KB)
3. Fig. 2. The thickness of the lithosphere based on the global thermal model with a resolution of 1 ° × 1 ° for the continental lithosphere (using the data of [4]).

Download (276KB)
4. Fig. 3. Maps of litotectonic terranes of the Earth.

Download (939KB)
5. Fig. 4. Modern lithospheric plates, paleoplites, including accretionary orogens and main sutures between them.

Download (799KB)
6. Fig. 5. Global distribution of deposits and diamond occurrences (using data [37]) in relation to fragments of the continental lithospheric keel.

Download (603KB)
7. Fig. 6. Global distribution of the main metal deposits against the background of the age provinces of the continental crust.

Download (801KB)
8. Fig. 7. Global paleotectonic reconstructions and the position of metal and diamond deposits at the end of the nuclear cycle and during the cratonization cycle.

Download (804KB)
9. Fig. 8. Global paleotectonic reconstructions of the tectonics cycle of modern type plates and the position of metal and diamond deposits.

Download (705KB)
10. Fig. 9. Collection and disintegration of supercontinents and change in types of ore deposits in geological time (according to [36]).

Download (271KB)
11. Fig. 10. Progressive fragmentation of the Neo-Archean continental lithospheric keel from 2450 million years ago to the present.

Download (325KB)

Copyright (c) 2019 Russian Academy of Sciences