The Mediterranean Salt-Tectonic Supergiant: Salt Distribution and Its Tectono-Kinematic History

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The subject of our research is the Mediterranean salt-tectonic supergiant. Its geological history includes two peaks of salt accumulation of different ages: the most famous late Miocene Messinian and the preceding Triassic. Both peaks are associated with the main tectonic events in the history of the Neo-Tethys and its margins. The Triassic peak is associated with the riftogenic foundation and disclosure of the Neo-Tethys, and the Messinian peak is associated with the final phases of its collisional closure. It was made an attempt to substantiate the presence in the substrate and in the margins of the Messinian salt accumulation basins of more ancient buried salt strata, the processes of intensive crumpling of which during the collision of paleocontinents and paleomicrocontinents were accompanied by the removal of salts from their original locations and could contribute to the accumulation of salts at the Messinian level. The work is based on the results of long-term complex lithological and tectonic studies performed by the author, of salt-bearing sedimentary basins in Russia and the World and on a broad generalization of the data on the Mediterranean. The article summarizes and analyzes geological and tectonic material covering the modern distribution and relationship of the Miocene and Triassic salts in the Mediterranean, reveals the presence of spatial relationships between them, considers the main morpho-kinetic types of salt bodies and characterizes their features in different areas of the Mediterranean. For the Triassic salts, currently largely residual, a mode of their original distribution has been reconstructed, the most important feature of which was the maximum development of salts along riftogenic passive margins of paleo-continents and paleo-microcontinents. Possible changes in salt bodies during the tectonic and kinematic history of the region and the mode of their distribution by the beginning of the Messinian time are considered. It has been concluded that the basins of accumulation of Messinian salts were located mainly within the areas of pre-Messinian distribution of Triassic salts. The processes of collision of paleo-continents and paleo-microcontinents, which reached the greatest intensity at the end of the Miocene, led to a sharp increase in the intensity of the processes of compression, crumpling, and disruption of salt-bearing sedimentary complexes, widely developed along their passive paleo-margins, and was accompanied by large-scale tectono-kinematic removal of the Triassic brine-salt masses from these complexes. All this created material prerequisites for the participation of these masses in the allochthonous and neo-autochthonous accumulation of salts at the Messinian level and served as one of the probable causes of the Messinian salt crisis.

Full Text

Restricted Access

About the authors

G. A. Belenitskaya

Karpinsky All-Russian Research Geological Institute

Author for correspondence.
Email: gab_2212@mail.ru
Russian Federation, bld. 74, Sredny Prosp., 199106 Saint Petersburg

References

  1. Беленицкая Г.А. Галогенсодержащие бассейны. – В кн.: Лито-геодинамика и минерагения осадочных бассейнов. – Под ред. А.Д. Щеглова. – СПб.: ВСЕГЕИ, 1998. С. 220‒320.
  2. Беленицкая Г.А. Соленосные осадочные бассейны. Литолого-фациальный, геодинамический и минерагенический анализ. – СПб.: ВСЕГЕИ, 2000. 72 с.
  3. Беленицкая Г.А. Соляная тектоника. – В кн.: Планета Земля. – Тектоника и геодинамика. – Ред. Л.И. Красный, О.В. Петров, Б.А. Блюман. – СПб.: Изд-во ВСЕГЕИ, 2004. С. 173–182.
  4. Беленицкая Г.А. Мексиканский залив – центр природных и геотехногенных нефтяных катастроф // Региональная геология и металлогения. 2011. № 45. С. 51–69.
  5. Беленицкая Г.А. Мертвое море – очаг рассольно-соляной разгрузки недр (геология, происхождение, мифы). – СПб.: СПбГУ, 2013. 112 с.
  6. Беленицкая Г.А. Соли в земной коре: распространение и кинематическая история // Литосфера. 2017. Т. 17. № 3. С. 5‒28. Doi: https://doi.org/10.24930/1681-9004-2017-3-005-028
  7. Беленицкая Г.А. Соли Земли: тектонические, кинематические и магматические аспекты геологической истории. – М.: ГЕОС, 2020. 606 с.
  8. Беленицкая Г.А., Романовский С.И., Феоктистов В.П. Тектоно-седиментологическое моделирование и прогнозно-минерагенический анализ основных геодинамических групп рудоносных осадочных бассейнов России. – Ред. Н.В. Милетенко, В.М. Терентьев. – СПб.: Изд-во ВСЕГЕИ, 2001. 110 с.
  9. Беленицкая Г.А., Соболев Н.Н., Петров О.В., Карпунин А.М., Задорожная Н.М., Зинченко В.Н., Карпузов А.Ф., Леонтьев Д.И., Мозолева И.Н., Юдин С.В., Бузовкин С.В., Енгалычев С.Ю., Миронов Ю.Б., Петров Е.О., Полякова Н.Ф., Чувашов Б.И. – Рифовые, соленосные и черносланцевые формации России. – Под ред. Г.А. Беленицкой, О.В. Петрова, Н.Н. Соболева. – СПб: ВСЕГЕИ, 2015. 624 с. (Тр. ВСЕГЕИ. Нов.сер. Вып. 355).
  10. Белоусов В.В. Тектонические наблюдения во Французских Альпах // Сов. геология. 1956. № 54. С. 37‒62.
  11. Богданов Н.А. Тектоника глубоководных впадин окраинных морей. – М.: Недра, 1988. 221 с.
  12. Волож Ю.А., Дмитриевский А.Н., Леонов Ю.Г., Милетенко Н.В., Ровнин Л.И. О стратегии очередного этапа нефтепоисковых работ в Прикаспийской нефтегазоносной провинции // Геология и геофизика. 2009. Т. 50. № 4. С. 341–362.
  13. Геология континентальных окраин – Под. ред. К. Берка, Ч. Дрейка – М.: Мир, 1978.
  14. Грачевский М.М., Берлин Ю.М., Дубовский И.Т., Ульмишек Г.Ф. Корреляция разнофациальных толщ при поисках нефти и газа. – Под ред. В. А. Долицкого. – М.: Недра, 1978. 299 с.
  15. Жарков М.А., Жаркова Т.М., Мерзляков Г.А. Триасовые и раннеюрские эвапоритовые формации Северо-Западной Африки. – В кн.: Сравнительная характеристика эвапоритовых и карбонатных формаций. – Под ред. А.Л. Яншина.‒ Новосибирск: Наука, 1984. С. 3‒54.
  16. Живаго А.В. Проявления соляной тектоники в поверхностных слоях донных отложений Средиземного моря. – Ред. И. М. Сборщиков – М.: Наука, 1994. 61 с.
  17. Копп М.Л. Структуры латерального выжимания в Альпийско-Гималайском коллизионном поясе. – Отв. ред. Ю.Г. Леонов. – М.: Научный мир, 1997. 314 с.
  18. Кузнецов В.Г. Геология рифов и их нефтегазоносность. – М.: Недра, 1978. 304 с.
  19. Ле Пишон К. Впадины Средиземного моря. В кн.: История и происхождение окраинных и внутренних морей. – Отв. ред. Н.А. Богданов – Мат-лы 27-й МГК. Докл. Т.6. Ч.II. – М.: Наука, 1984. С. 73‒90.
  20. Милановский Е.Е. Рифтогенез в истории Земли. Рифтогенез в подвижных поясах. – М.: Недра, 1987. 297 с.
  21. Монин А.С., Зоненшайн Л.П. История океана Тетис. – М.: ИОАН, 1987. 154 с.
  22. Москаленко В.Н. Строение земной коры Средиземного моря по сейсмическим данным. – Ред. Я.П. Маловицкий. – М.: Наука, 1981. 112 с.
  23. Сулиди-Кондратьев Е.Д., Козлов В.В. Соленосные формации Северной Африки и Аравии, закономерности их формирования и связанные с ними полезные ископаемые. – В кн.: Основные проблемы соленакопления. – Под ред. А.Л. Яншина, М.А. Жаркова. – Новосибирск: Наука, 1981. С. 153‒161.
  24. Тектоника Европы и смежных областей: варисциды, эпипалеозойские платформы, альпиды. – Объяснительная записка к «Международной тектонической карте Европы и смежных областей масштаба 1:2 500 000». – Под ред. А.В. Пейве. – М.: Наука, 1978. 587 с.
  25. Тектоническая карта Средиземного моря. – Масштаб 1:5 000 000. – Объяснительная записка. – Под ред. Н.А. Богданова, В.Е. Хаина, В.Д. Чеховича и др. – М.: Федеральная служба геодезии и картографии, 1994.
  26. Хаин В.Е. Региональная геотектоника. Северная и Южная Америка, Антарктида и Африка. – М.: Недра, 1971. Вып. 1. 548 с.
  27. Хаин В.Е. Региональная геотектоника. Внеальпийская Европа и Западная Азия. – М.: Недра, 1977. Вып. 2. 359 с.
  28. Хаин В.Е. Региональная геотектоника. Альпийский Средиземноморский пояс. – М.: Недра, 1984. 344 с.
  29. Чумаков И.С. Некоторые вопросы геологической истории Средиземноморского бассейна в конце миоцена‒начале плиоцена по новым данным // Советская геология. 1971. № 10. С. 3‒14.
  30. Чумаков И.С. Об одной из проблем соленакопления в мессинском эвапоритовом бассейне // Вестн. МГУ. Сер. 4: Геология. 1996. № 6. С. 40‒45.
  31. Allen H., Jackson C.A., Fraser A. Gravity-driven deformation of a youthful saline giant: The interplay between gliding and spreading in the Messinian Basins of the Eastern Mediterranean // Petroleum Geoscience. July 2016. doi: 10.1144/petgeo2016-034
  32. Belenitskaya G.A. Salt Tectonics at the Margins of Young Oceans // Geotectonics. 2016. Vol. 50. No. 3. P. 244–256. doi: 10.1134/S001685211603003
  33. Belenitskaya G.A. Salt Systems of the Earth: Distribution, Tectonic and Kinematic History, Salt-Naphthids Interrelations, Discharge Foci, Recycling. – Wiley, NY, USA. 2018. 714 p.
  34. Biju-Duval B. Carte geologique et structurale des bassins tertiaires du domaine mediterrane: Commentaires // Rev. Inst. Franc. Petrol. 1974. Vol. 29. No. 5. Р. 607‒638.
  35. Busson G. Le Trias comme periode salifere // Geologische Rundschau. 1982. Vol.71. No. 3. P. 857‒880.
  36. CIESM consensus report. The Messinian Salinity Crisis from mega-deposits to microbiology. – Ed by F. Briand, (CIESM Workshop Monographs, Monaco. 2008. Rep. No.33), 168 p.
  37. Deptuck M.E., Kendell K.L. A. Review of Mesozoic‒Cenozoic salt tectonics along the Scotian margin, Eastern Canada. – In: Permo‒Triassic Salt Provinces of Europe, North Africa and the Atlantic Margins. – Elsevier, NY, USA. 2017. P. 287‒312. Doi: http://dx.doi.org/10.1016/B978-0-12-809417-4.00014-8 2
  38. Eppelbaum L.V., Katz Y.I. Eastern Mediterranean: Combined geological-geophysical zonation and paleogeodynamics of the Mesozoic and Cenozoic structural-sedimentation stages // Marin. Petrol. Geol. 2015. Vol. 65. P. 198–216.
  39. Hsü K.J., Ryan W.B.F., Cita M.B. Late Miocene desiccation of the Mediterranean // Nature. 1973. № 242. P. 240–244.
  40. Hsu K.J., Montadert L., Bernoulli D. History of the Mediterranean salinity crisis // Nature. 1977. No. 267. P. 399‒403.
  41. Initial Reports of the Deep Sea Drilling Project. – U.S. Govt. Printing Office, Washington, 1968‒1990. Vol. 1‒120.
  42. Jackson C.A.-L., Jackson M.P.A., Hudec M. R. Understanding the kinematics of salt-bearing passive margins: a critical test of competing hypotheses for the origin of the Albian Gap, Santos Basin, offshore Brazil // Geol. Soc. Am. Bull. 2015. Vol. 127. No. 11/12. P. 1730–1751. doi: 10.1130/B31290.1
  43. Moneron J., Gvirtzman Z., Karcz Z., Sagy Y. Discovery of the Messinian Eratosthenes Canyon in the deep Levant Basin // Global and Planet. Change. 2024. Vol. 232. P. 104318, https://doi .org /10 .1016 /j.gloplacha. 2023 .104318
  44. Moneron J., Gvirtzman Z., Karcz Z., Shitrit O., Sagy Y. Exploring the relationship between sedimentary transport systems and basin dynamics: A case study from the Levant Basin (Eastern Mediterranean Sea) before, during, and after the Messinian // GSA Bull. 2025. Vol. 137. No. 3/4. P. 1423–1436. Doi: https://doi.org/10.1130/B37589.1
  45. Nader F.H. The Petroleum prospectivity of Lebanon: An overviev // J. Petrol. Geol. 2011. Vol. 34. P. 135–156.
  46. Roberts G., Peace D. Hydrocarbon plays and prospectivity of the Levantine Basin, offshore Lebanon and Syria from modern seismic data // GeoArabia. 2007. Vol. 12. No. 3. P. 99‒124.
  47. Rouchy J.-M. La genèse des vaporites messiniennes de Méditerranée. – Editions du Muséum National d´Histoire Naturelle, Paris, France. 1982, 267 p.
  48. Rouchy J.-M., Caruso A. The Messinian salinity crisis in the Mediterranean basin: A reassessment of the data and an integrated scenario // Sediment. Geol. 2006. Vol. 188–189. P. 35–67.
  49. Rouchy J.-M., Saint-Martin J.P. Late Miocene events in the Mediterranean as recorded by carbonate-evaporite relations // Geology. 1992. Vol. 20. P. 629–632.
  50. Roveri M., Flecker R., Krijgsman W., Lofi J. The Messinian Salinity Crisis: Past and future of a great challenge for marine sciences // Marin. Geol. 2014. Vol. 352. P. 25–58.
  51. Ryan W.B.F. Decoding the Mediterranean Salinity Crisis. – In: Major Discov eries in Sedimentary Geology in the Mediterranean Realm from a Historical Perspective to New Developments. – Ed. by M.B. Cita, J.M.D. Bernoulli (IAS Spec. Publ. 2007), P. 36‒60.
  52. Seismic Atlas of the “Messinian salinity crisis” markers in the Mediterranean and Black seas. – Ed by J. Lofi, J. Déverchère, V. Gaullier, C. Gorini, P. Guennoc, L. Loncke, A. Maillard, F. Sage, I. Thinon. (SGF, Mem. de la Societe Geologique de France. Paris. 2011. No. 179), 71 p.
  53. Skiple C., Anderson E., Fürstenau J. Seismic interpretation and attribute analysis of the Herodotus and the Levantine Basin, offshore Cyprus and Lebanon // Petrol. Geosci. 2021. Vol. 18. P. 433‒442. Doi: https://doi.org/10.1144/petgeo2011-072
  54. Ziegler P.A. Geological Atlas of Western and Central Europe. – Elsevier (in collaboration with Shel Int. Petrol. Maatschappij B.V.). Amsterdam. The Hagul, 1982. 130 p.
  55. Ziegler P.A., Horvath F. (eds ). Peri-Tethys. – Mem. 2. – Structure and Prospects of Alpine Basins and Forelands. – Mémoires du Muséum National d’Histoire naturelle, Paris Paris. 1997. Vol. 170. 552 p., atlas: 31 foldouts.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Diagram of the main structures of the Mediterranean Sea floor (according to [11, 25], with changes and additions). Showed: geological and geophysical profiles I-I′ ‒ VI-VI′ (solid lines in black); generalized sections (i-i′) ‒ (vii-vii′) (dashed lines in black). Designated (Arabic numerals in circles) are deep-sea basins: 1 ‒ Ligurian; 2 ‒ Balearic, 2a ‒ Valencian; 3 ‒ Algerian; 4 ‒ Alboran; 5 ‒ Tyrrhenian; 6 ‒ Ionian; 7 ‒ Levantine; 8 ‒ Aegean; 9 ‒ Adriatic. 1 – areas of deep-sea basins; 2 – extent of structures; 3 – fragments of the Calabrian-Hellenic subduction zone; 4 – boundary between areas: a – land, b – water areas; 5 – position of geological and geological-geophysical profiles; 6-7 – supposed position: 6 – geological-geophysical profiles, 7 – generalized sections

Download (1MB)
3. Fig. 2. Tectonic map of the Mediterranean salt-bearing region (according to [24, 25, 27, 28], with modifications and additions). Deep-sea basins (Arabic numerals in circles): 1 ‒ Ligurian; 2 ‒ Balearic; 2a ‒ Valencian; 3 ‒ Algerian; 4 ‒ Alboran; 5 ‒ Tyrrhenian; 6 ‒ Ionian; 7 ‒ Levantine; 8 ‒ Aegean; 9 ‒ Adriatic. 1 – subduction zones: a – active, b – relict; 2 – strike-slip faults; 3-4 – sutures: 3 ‒ collisional, 4 – collisional, expressed as thrusts; 5 – transform faults; 6 – discontinuous tectonic disturbances: a – steeply oriented faults, b – strike-slip faults, c – normal faults, d – reverse faults; 7 – thrust faults: a – established, b – inferred; 8 – outer boundaries of the Alpine nappes: a – established, b – inferred; 9 – extent of folding; 10 – main geostructural elements on land: a – Alpine fold-and-thrust belt (including median massifs and marginal troughs), b – platform regions; 11 ‒ regions with oceanic crust of different ages: a – pre-Cretaceous, b – pre-middle Miocene, c – pre-Pliocene; 12 ‒ areas with thinned continental crust of different ages: a ‒ pre-Cretaceous, b ‒ pre-Middle Miocene, c ‒ pre-Pliocene; 13 ‒ water areas; 14 ‒ deep-sea basins

Download (1MB)
4. Fig. 3. Map-scheme of the location of lithospheric plates of the Mediterranean region (according to [24, 25, 27, 28]). 1-2 – lithospheric plates: 1 – Laurasian group, 2 – Gondwana group; 3–5 – boundaries of lithospheric plates: 3 – collisional (partial thrusting (black arrows) of continental crust blocks during collision), 4 – subduction: a – modern and Cenozoic, b – Mesozoic–Cenozoic according to tomography data, 5 – slip (direction (black half-arrows) of displacement of continental crust blocks during slip)

Download (543KB)
5. Fig. 4. The main stages of the evolution of the Mexican-Mediterranean-Arabian salt-tectonic superbelt (according to data from [2, 4, 5, 7, 26, 27, 37], with additions). (a) – Salt-bearing basins of the riftogenic Triassic-Jurassic stage (T₃‒J₁); (b) – salt-bearing basins of the collisional neogeodynamic stage (P₃‒Q). The large salt-tectonic basins of the Mexican-Mediterranean-Arabian superbelt are indicated (Arabic numerals in circles): 1 – Mexican, 2 – Mediterranean, 3 – Mesopotamian, 4 – Palmyra-North Sinai of the Dead Sea. 1–4 – geodynamic belts: 1 – rift continental (a – intracontinental, b – intercontinental, c – rift zones), 2 – rift oceanic, 3 – subduction (a – collisional, b – peripheral zones), 4 – passive marginal (a‒b – for the neogeodynamic stage: a – riftogenic, b – strike-slip; c – for the Triassic‒Jurassic time (without specification)); 5 – boundaries between regions with different types of geodynamic regime; 6 – intraplate oceanic regions; 7 – intraplate stable continental regions within: a – land, b – water areas; 8 – salt-bearing formations (established), geochemical types: a – sulfate-calcium, b – halite, c – chloride-potassium, d – sulfate-potassium; 9 – salt-bearing formations (inferred), geochemical types: a – halite, b – chloride-potassium; 10 – salt-bearing formations (shown out of scale), geochemical types: a – sulfate-calcium, b – halite, c – chloride-potassium, d – sulfate-potassium, d – sulfate-sodium, e – soda, g – variegated; 11 – boundary of continental crust blocks for the Triassic‒Jurassic time; 12 – large salt-tectonic basins of the Mexican-Mediterranean-Arabian superbelt; 13 – general area of distribution of Triassic‒Jurassic salts of the Mexican-Mediterranean-Arabian superbelt (intersection zones (dashed lines are thin) with other salt-bearing belts)

Download (949KB)
6. Fig. 5. Map of the distribution of Messinian salts in the Mediterranean salt-tectonic superbasin (according to [13, 19, 22, 25, 31, 36, 38-41, 43-47, 49-55]). Deep-sea basins (Arabic numerals in circles): 1 ‒ Ligurian; 2 ‒ Balearic, 2a ‒ Valencian; 3 ‒ Algerian; 4 ‒ Alboran; 5 ‒ Tyrrhenian; 6 ‒ Ionian; 7 ‒ Levantine; 8 ‒ Aegean; 9 ‒ Adriatic. 1 ‒ distribution boundaries of Messinian salt-bearing deposits: a ‒ general salinity contours (N₁³ₘₑₛₛ), b ‒ boundaries of areas with established presence of potassium salt horizons (N₁³ₘₑₛₛ); 2 ‒ southern boundary of the Mediterranean Ridge; 3 ‒ areas of distribution of Messinian salt-bearing deposits; 4 ‒ subduction zones: a ‒ active, b ‒ relict; 5 ‒ strike-slip faults; 6‒7 ‒ sutures: 6 ‒ collisional, 7 ‒ collisional, expressed as thrusts; 8 ‒ transform faults; 9 – faults: a – steeply oriented faults, b – strike-slip faults, c – normal faults, d – reverse faults; 10 – thrust faults: a – established, b – assumed; 11 – outer boundaries of the Alpine nappes: a – established, b – assumed; 12 – extent of folding; 13 – main geostructural elements on land: a – Alpine fold-and-thrust belt (including median massifs and marginal troughs), b – platform regions; 14 – water areas; 15 – deep-sea basins

Download (1MB)
7. Fig. 6. Geological and geophysical sections of salt-dome basins in the Western Mediterranean (i)‒(i′) and Eastern Mediterranean (ii)‒(ii′) (according to [45, 52, 53, 54]). (a) ‒ Geological and geophysical section (i)‒(i′) through the Ligurian Sea (Western Mediterranean); (b) ‒ sublatitudinal geological and geophysical section (ii)‒(ii′) through the Levantine Sea (Eastern Mediterranean). In the sections of sedimentary series, two levels of salt distribution are developed, complicated by ascending salt-dome structures: Triassic (T (?)) and Messinian (N₁³ₘₑₛₛ). The position of cuts (i)‒(i′) and (ii)‒(ii′) ‒ see Fig. 1.

Download (1MB)
8. Fig. 7. Typical seismoacoustic section (iii)–(iii′) through the area of salt-dome tectonics in the Messinian salts in the north of the Balearic Basin of the Western Mediterranean (according to [22, 34]). The position of section (iii)‒(iii′) ‒ see the inset and Fig. 1. 1 – Pliocene‒Quaternary deposits (N₂‒Q); 2 – Upper Miocene salt-bearing complexes (N₁³): a – accumulations of salt-dome bodies composed of massive salt, b – overlying stratified salt-bearing deposits

Download (862KB)
9. Fig. 8. Map of the distribution of Triassic salts in the Mediterranean salt-tectonic superbasin (according to data from [10, 15, 23, 25, 27, 28, 33, 35, 38, 45, 46, 54, 55], with additions). Deep-sea basins are indicated (Arabic numerals in circles): 1 ‒ Ligurian; 2 ‒ Balearic, 2a ‒ Valencian; 3 ‒ Algerian; 4 ‒ Alboran; 5 ‒ Tyrrhenian; 6 ‒ Ionian; 7 ‒ Levantine; 8 ‒ Aegean; 9 ‒ Adriatic. 1 ‒ distribution boundaries of Triassic salt-bearing deposits: a ‒ traced, b ‒ inferred; 2 ‒ distribution boundaries of Triassic salt-bearing deposits occurring deeper than Miocene deposits (overlain by Miocene deposits): a ‒ traced, b ‒ inferred; 3 ‒ relatively continuous development of salt bodies of sheet and salt-tectonic morphokinetic macrotypes; 4 ‒ discrete distribution of salt bodies of mainly orthotectonic morphokinetic macrotype: a ‒ in nappe-folded orogenic regions, b ‒ buried under sedimentary cover containing Messinian salts; 5 ‒ strike-slip faults; 6‒7 ‒ sutures: 6 ‒ collisional, 7 ‒ collisional, expressed as thrusts; 8 – transform faults; 9 – discontinuous tectonic disturbances: a – steeply oriented faults, b – strike-slip faults, c – normal faults, d – reverse faults; 10 – thrust faults: a – established, b – inferred; 11 – outer boundaries of the Alpine nappes: a – established, b – inferred; 12 – extent of folding; 13 – main geostructural elements on land: a – Alpine fold-and-thrust belt (including median massifs and marginal troughs), b – platform regions; 14 – water areas; 15 – deep-sea basins

Download (979KB)
10. Fig. 9. Schematic map of the relationship between the areas of distribution and the nature of occurrence of Triassic and Messinian salts in the Mediterranean salt-tectonic superbasin (according to data from [10, 13, 15, 19, 22, 23, 25, 27, 28, 31, 33, 35, 36, 38-41, 43-47, 49-55], with modifications and additions). 1 ‒ distribution boundaries of Messinian salt-bearing deposits (N₁³): a ‒ general contours, b ‒ boundaries of areas with established potassium content; 2 ‒ southern boundary of the Mediterranean ridge; 3 ‒ areas of established distribution of salt-bearing deposits at the Messinian level; 4 ‒ distribution boundaries of Triassic salt-bearing deposits: a ‒ traced, b ‒ inferred; 5 ‒ distribution boundaries of Triassic salt-bearing deposits occurring deeper than Miocene deposits (overlapped by Miocene deposits): a ‒ traced, b ‒ inferred; 6 ‒ areas of relatively continuous distribution of Triassic salt-bearing deposits of sheet and salt-tectonic morphokinetic macrotypes; 7 ‒ areas of discrete distribution of Triassic salt-bearing deposits of predominantly orthotectonic morphokinetic macrotype: a ‒ in nappe-folded orogenic regions, b ‒ buried under sedimentary cover containing Messinian salts; 8-9 ‒ areas of overlapping by Messinian salts of sediments containing Triassic salts of different morphokinetic macrotypes: 8 ‒ sheet and salt-tectonic, 9 ‒ orthotectonic; 10 ‒ subduction zones: a ‒ active, b ‒ relict; 11 ‒ strike-slip faults; 12-13 ‒ sutures: 12 ‒ collisional, 13 ‒ collisional, expressed as thrusts; 14 ‒ transform faults; 15 ‒ discontinuous tectonic disturbances: a ‒ steeply oriented faults, b ‒ strike-slip faults, c ‒ normal faults, d ‒ reverse faults; 16 ‒ thrust faults: a ‒ established, b ‒ inferred; 17 ‒ outer boundaries of Alpine nappes: a ‒ established, b ‒ inferred; 18 – the extent of folding; 19 – the main geostructural elements on land: a – the Alpine fold-thrust belt (including median massifs and marginal troughs), b – platform areas; 20 – water areas

Download (997KB)
11. Fig. 10. Geological profiles through the Reef (profile I‒I′) and Betida (profile II‒II′) folded-thrust structures through the Alboran deep-sea basin separating them (according to data from [11, 13, 15, 16, 19, 24, 25, 28, 39, 47, 55]). For the position of profiles I‒I′ and II‒II′, see the inset and Fig. 1. 1–5 ‒ sedimentary complexes: 1 ‒ Upper Miocene (N₁³) (the distribution level of the Messinian salt cover-like bodies complicated by diapiric structures is shown in black), 2 ‒ Paleogene (P), 3 ‒ Cretaceous (K), 4 ‒ Jurassic carbonate type of carbonate platforms (J), 5 ‒ Upper Triassic salts (T₃); 6 ‒ Hercynian basement; 7‒8 ‒ tectonic: 7 ‒ covers, 8 ‒ faults and directions of displacements; 9 ‒ secondary “salt joints” (probable migration routes of brine-salt masses along tectonic faults and thrusts); 10 ‒ water area of the Alboran Sea; 11 - supposed directions of migration of brine-salt masses

Download (523KB)
12. Fig. 11. Generalized geological section (iv)‒(iv′) of the Ligurian-Algerian-Provencal salt-dome basin (Valencian rift zone) of the Western Mediterranean (according to [20, 24, 28, 52, 55]). The position of section (iv)‒(iv′) ‒ see Fig. 1. 1–4 ‒ sedimentary complexes: 1 ‒ Pliocene‒Quaternary essentially terrigenous (N₂‒Q), 2 ‒ Upper Miocene salt-bearing (N₁³) (a – stratified salt-bearing deposits, b – salt cover-like bodies complicated by diapiric structures), 3 ‒ Lower–Upper Cretaceous essentially terrigenous (K₁-₂), 4 ‒ Jurassic‒Lower Cretaceous essentially carbonate, of the carbonate platform type (J‒K₁); 5 ‒ Upper Triassic salt-bearing, with a predominance of residual salinity (T3); 6 ‒ Paleozoic basement (PZ); 7 ‒ tectonic faults and directions of displacements; 8 ‒ secondary “salt seams” along tectonic faults; 9 ‒ water area of the Valencia Basin of the modern Mediterranean Sea

Download (567KB)
13. Fig. 12. Geological profile III‒III′ across the Northern Apennines (Italian folded-thrust region) (according to [7, 10, 25, 28, 30, 54, 55]). For the position of profile III‒III′, see the inset and Fig. 1. 1 ‒ Pliocene‒Pleistocene deposits (N₂‒Q); 2 ‒ Upper Miocene deposits (the distribution level of the Messinian salt nappe bodies complicated by diapir structures (N₁³) is shown in black); 3 ‒ Paleogene‒Miocene mainly flysch deposits (P‒N₁); 4 – Jurassic‒Cretaceous (partially Paleogene) deposits, including bodies of the carbonate platform type (J‒K); 5 ‒ Upper Triassic salt-bearing complex, mainly with residual autochthonous and injection-tectonic salinity (T₃); 6 ‒ Permian‒Lower Triassic deposits (P‒T₁); 7 ‒ tectonic faults; 8 ‒ salt joints: a ‒ secondary, along tectonic faults (migration routes of Triassic salts), b ‒ primary, at the sites of the initial occurrence of Triassic salts (residual after the emigration of salts); 9 ‒ water area of the Adriatic Sea; 10 ‒ probable routes of ascending migration of Upper Triassic brine-salt masses

Download (701KB)
14. Fig. 13. Geological profiles IV‒IV′ and V‒V′ across the Central Apennines (Italian nappe-fold region) (according to [7, 10, 25, 28, 30, 54, 55]). For the position of profiles IV‒IV′ and V‒V′ ‒ see the inset and Fig. 1. 1 ‒ Pliocene‒Pleistocene deposits (N₂‒Q); 2 ‒ Upper Miocene deposits (the distribution level of the Messinian salt nappe bodies complicated by diapir structures (N₁³) is shown in black); 3 ‒ Paleogene‒Miocene flysch deposits (P‒N1); 4-5 – Jurassic-Paleogene deposits (J-P), complexes: 4 – shelf essentially carbonate, like carbonate platforms, 5 – predominantly bathyal; 6 ‒ levels and zones of residual-autochthonous and allochthonous distribution of Upper Triassic (T₃) salt-bearing (potassium-bearing) deposits; 7 ‒ Paleozoic basement (PZ); 8 ‒ tectonic faults; 9 ‒ salt joints: a ‒ secondary along tectonic faults, b ‒ secondary along gentle thrusts at the base of tectonic covers of the cover, c ‒ residual-primary, preserved in places of initial occurrence of salts; 10 ‒ water areas of the Tyrrhenian and Adriatic Seas; 11 - probable routes of ascending migration of Upper Triassic brine-salt masses

Download (878KB)
15. Fig. 14. Schematic geological section (v)‒(v′) of the Pre-Apulian and Ionian zones of Greece (according to [24, 25, 28, 54], with modifications and additions). Position of section (v)‒(v′) ‒ see Fig. 1. 1 ‒ Upper Cretaceous‒Eocene flysch deposits (K₂‒P₂); 2‒4 ‒ carbonate complexes: 2 ‒ Upper Cretaceous brecciated limestones (K2), 3 ‒ Upper Jurassic‒Upper Cretaceous Pelagonian limestones (J₃‒K₂), 4 ‒ Middle–Upper Jurassic neritic limestones (J₂₋₃); 5 – Upper Triassic‒Lower Jurassic salt-bearing complex (T₃‒J₁); 6 – Upper Miocene salt-bearing complex (the level of probable distribution of Messinian salt cover bodies complicated by diapiric structures (N₁³) is shown); 7 – tectonic faults; 8 – Ionian Sea area; 9 – probable migration routes of brine-salt masses from the Upper Triassic‒Lower Jurassic salt-bearing complex

Download (290KB)
16. Fig. 15. Geological profile VI‒VI′ of the central part of the Levant Sea with Triassic and Messinian salinity levels (according to data from [45, 46, 52‒54], with modifications and additions). In the inset: the area of probable distribution of Triassic‒Jurassic salt-bearing complexes in the south and southeast of the Eastern Mediterranean (within the water area and on land) is highlighted (oblique cell). For the position of profile line VI‒VI′ ‒ see the inset and Fig. 1. 1 – Messinian salts (N₁³); 2 – Triassic salt-bearing deposits (T); 3 – Jurassic and Cretaceous carbonate deposits of the carbonate platform type; 4 – reefs; 5 – hydrothermal dolomites formed along the migration paths of brines and hydrocarbons; 6 – tectonic faults; 7 – supposed migration paths: a – hydrocarbons and brines, b – brine-salt masses

Download (951KB)
17. Fig. 16. Seismic sections (vi)‒(vi′) and (vii)‒(vii′) of the eastern part of the Levant basin (according to data from [40, 41, 47‒49], with modifications and additions). (a) ‒ section (vi)‒(vi′) through the central zone; (b) ‒ section (vii)‒(vii′) through the southern zone. The position of sections (vi)‒(vi′) ‒ (vii)‒(vii′) ‒ see Fig. 1. The position of the roof of the Triassic salt-bearing deposits and the emerging paths of the ascending migration of Triassic salts are shown (lines in blue).

Download (926KB)

Copyright (c) 2025 Russian academy of sciences