Application of experimental tectonic methods in petroleum geology on the examples of deposits in Western Siberia

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

Modeling of the most common types formation of anticlinal and uplift-thrust tectonic structures was carried out with using optical polarization and tectonic-sedimentary methods based on seismic sections analysis of various areas and deposits located in the West Siberian oil and gas basin that were selected for examples. Experiments with using the optical-polarization method allowed us to research the nature of the stress-regime arising in the gelatin models of the sedimentary cover due to the growth of anticlinal blocks and uplift-thrust dislocations. By the level of tangential stresses and orientation of isoclines in optical models, zones of probable tectonogenic fracture and the direction of cracks are predicted.

2D tectonic-sedimentation modeling made possible to explain the mechanism of formation of “rootless” uplifts, zones of subsidence or decompression in sediments, the principle of tectonic “pump” function, and to obtain dependencies between size and shape of uplift, density and opening of cracks formed above, to calculate the value of fracture “porosity”, as well as lateral dimensions of zones of tectonogenic fracturing.

3D tectono-sedimentation modeling allowed to link hydrography of the earth surface of the simulated area with decompression of zones that came to the surface in the models. These zones of decompression can serve as a search sign for exploration of highly productive zones containing hydrocarbon deposits.

全文:

受限制的访问

作者简介

M. Zubkov

West-Siberian Geological Center, Ltd

编辑信件的主要联系方式.
Email: zubkovmyu@mail.ru
俄罗斯联邦, Tyumen

参考

  1. Белоусов В.В., Гзовский М.В. Экспериментальная тектоника. М. Недра, 1964, 118 с.
  2. Бондаренко П.М., Лучицкий И.В. Сдвиги и зоны скалывания в тектонических полях напряжений // Экспериментальная тектоника в теоретической и прикладной геологии / И.В. Лучицкий, П.М. Бондаренко (ред.). М.: Наука, 1985. С.159–182.
  3. Гзовский М.В. Основы тектонофизики. М. Наука, 1975. 536 с.
  4. Зубков М.Ю., Бондаренко П.М. Прогноз зон вторичной трещиноватости на основе данных сейсморазведки и тектонофизического моделирования // Геология нефти и газа. 1999. № 11–12. С. 31–40.
  5. Зубков М.Ю., Бондаренко П.М., Трухан Я.А., Лазарев А.Г. Прогноз углеводородных залежей в трещинных коллекторах баженовской и абалакской свит Восточно-Пальяновской площади на основе результатов сейсморазведки и тектонофизического моделирования // Пути реализации нефтегазового потенциала ХМАО / В.А. Волков (ред.). Ханты-Мансийск: Путиведъ, 2000. С.174–187.
  6. Зубков М.Ю. Коллекторы в бажено-абалакском комплексе Западной Сибири и способы их прогноза // Геология нефти и газа. 2014. № 5. С. 58–72.
  7. Зубков М.Ю.Тектоногидротермальные процессы в юрских отложениях Западной Сибири // Геология нефти и газа. 2017. № 1. С. 60–76.
  8. Копыстянский Р.С. Трещиноватость горных пород и ее значение в нефтегазовой геологии. Киев: Наукова думка. 1978, 216 с.
  9. Кузнецов О.Л., Чиркин И.А., Курьянов Ю.А., Шлёнкин С.И., Арутюнов С.Л., Дыбленко В.П., Рогоцкий Г.В. Новые технологи и решение прикладных задач / Сейсмоакустика пористых и трещиноватых геологических сред. М.: Изд-во “ЦИТвП”, 2007. Т. 3. 434 с.
  10. Лучицкий И.В., Бондаренко П.М. Моделирование полей напряжений над интрузивным куполом // Докл. АН СССР. 1974. Т. 216. № 2. С. 316–318.
  11. Осокина Н.Д. Пластичные и упругие низкомодульные материалы для исследования напряжений в земной коре методом моделирования. М.: Изд-во АН СССР, 1963, 196 с.
  12. Патент на изобретение № 2183332 “Способ прогнозирования зон развития вторичных коллекторов трещинного типа в осадочном чехле”. Авт.: М.Ю. Зубков, П.М. Бондаренко. Приоритет от 0.8. 11. 2000.
  13. Фрохт М.М. Фотоупругость. М.: Гостехиздат, 1948. Т. 1. 432 с.
  14. Фрохт М.М. Фотоупругость. М.: Гостехиздат, 1950. Т. 2. 488 с.
  15. Хаимова-Малькова Р.И. Методика исследований напряжений поляризационно-оптическим методом. М.: Наука, 1970. 116 с.
  16. Alai R., Mohamed A.B., Taha M.T.A. Fracture characterization in reservoirs through seismic attributes // First Break. 2014. Vol. 32. No 10. P. 83–92.
  17. Dorn G.A., Dominguez J. Post-stack attribute-based fracture characterization: A case study from the Niobrara shale // First Break. 2017. Vol. 35. No 5. P. 85–89.
  18. Hale D. Methods to compute fault images, extract fault surfaces and estimate fault throws from 3D seismic images // Geophysics. 2012. Vol. 78. No 2. P.33–43.
  19. Jaglan H., Qayyum F., Huk H. Unconventional seismic attributes for fracture characterization // First Break. 2015. Vol. 33. No 3. P.101–109.
  20. Nurhasan A., Davis T.L. Interpretation of wrench faulting and fault-related pressure compartmentalization, Wattenberg Field, Denver Basin Colorado // First Break. 2016. Vol. 34. No 2. P. 53–61.
  21. Williams R.M., Pascual-Cebrian E., Gutmanis J.C., Paton J.S. Delineating fractures in the sub-seismic domain through seismic and image log analysis:a North Sea case study // First Break. 2017. Vol. 35. No 3. P. 49–57.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian academy of sciences, 2019