Late Vendian kotlinian crisis on the East European Platform: lithogeochemical indicators of depositional environment
- Authors: Maslov A.V.1, Grazhdankin D.V.2, Podkovyrov V.N.3
-
Affiliations:
- Zavaritsky Institute of Geology and Geochemistry, Ural Branch of the Russian Academy of Sciences
- Trofimuk Institute of Petroleum Geology and Geophysics, Siberian Branch of the Russian Academy of Sciences
- Institute of Precambrian Geology and Geochronology, Russian Academy of Sciences
- Issue: No 1 (2019)
- Pages: 2-30
- Section: Articles
- URL: https://journals.eco-vector.com/0024-497X/article/view/11093
- DOI: https://doi.org/10.31857/S0024-497X201912-30
- ID: 11093
Cite item
Abstract
Sharp changes in the biodiversity of fossil organisms in the Upper Vendian of the East European Platform are considered as the manifestation of global crisis immediately prior to the “Cambrian Explosion.” However, they could be caused by local environmental perturbations. Variations of some lithogeochemical indicators of depositional environment (indicators of paleoclimate, exhalation activity, redox settings, and paleobioproductivity) were analyzed in order to establish the possible influence of sedimentary systems on evolutionary processes in the Late Vendian and at the boundary with the Cambrian. The applied algorithm of lithogeochemical studies revealed no significant perturbations in physical properties of the environment on a scale of sedimentary basins. The obtained data suggest that local factors did not affect the evolution of Ediacaran biota on the East European Platform and confirm the global nature of transitions between the Redkinian, Belomorian, and Kotlinian biotas.
Full Text

About the authors
A. V. Maslov
Zavaritsky Institute of Geology and Geochemistry, Ural Branch of the Russian Academy of Sciences
Author for correspondence.
Email: amas2004@mail.ru
Russian Federation, 15, Vonsonsky str., Yekaterinburg, 620016
D. V. Grazhdankin
Trofimuk Institute of Petroleum Geology and Geophysics, Siberian Branch of the Russian Academy of Sciences
Email: f6oeoua@mac.com
3, pr. Akademika Koptyuga, Novosibirsk, 630090
V. N. Podkovyrov
Institute of Precambrian Geology and Geochronology, Russian Academy of Sciences
Email: vpodk@mail.ru
Russian Federation, 2, nab. Makarova, St. Petersburg, 199034
References
- Великанов В.А., Асеева Е.А., Федонкин М.А. Венд Украины. Киев: Наукова думка, 1983. 163 с.
- Великанов В.А., Коренчук Л.В., Кирьянов В.В. и др. Венд Подолии. Путеводитель экскурсии III международного симпозиума по кембрийской системе и границе венда и кембрия. Киев: ИГН АН Украины, 1990. 129 с.
- Великанов В.А. Украинский гипостратотип вендской системы (Веліканов В.Я. Український гіпостратотип вендської системи) // Геол. журн. 2011. № 1. С. 42–49.
- Вендская система. Историко-геологическое и палеонтологическое обоснование. Т. 2. Стратиграфия и геологические процессы / Отв. ред. Б.С. Соколов, М.А. Федонкин. М.: Наука, 1985. 238 с.
- Гаврилов Ю.О., Щепетова Е.В., Барабошкин Е.Ю., Щербинина Е.А. Аноксический раннемеловой бассейн Русской плиты: седиментология и геохимия // Литология и полез. ископаемые. 2002. № 4. С. 359–380.
- Гаврилов Ю.О., Щепетова Е.В., Рогов М.А., Щербинина Е.А. Седиментология, геохимия и биота волжских углеродистых отложений северной части Среднерусского моря (Костромская область) // Литология и полез. ископаемые. 2008. № 4. С. 396–424.
- Гражданкин Д.В. Строение и условия осадконакопления вендского комплекса в Юго-Восточном Беломорье // Стратиграфия. Геол. корреляция. 2003. Т. 11. № 4. С. 3–23.
- Гражданкин Д.В., Краюшкин А.В. Ископаемые следы жизнедеятельности и верхняя граница венда в Юго-Восточном Беломорье // ДАН. 2007. Т. 416. № 4. С. 514–518.
- Гражданкин Д.В., Маслов А.В. Секвентная стратиграфия верхнего венда Восточно-Европейской платформы // ДАН. 2009. Т. 426. № 1. С. 66–70.
- Гражданкин Д.В., Маслов А.В. Место венда в международной стратиграфической шкале // Геология и геофизика. 2015. Т. 56. № 4. С. 703–717.
- Гражданкин Д.В., Маслов А.В., Крупенин М.Т. Строение и этапы формирования вендских отложений сылвицкой серии западного склона Среднего Урала // Стратиграфия. Геол. корреляция. 2009. Т. 17. № 5. С. 20–40.
- Гражданкин Д.В., Маслов А.В., Крупенин М.Т., Ронкин Ю.Л. Осадочные системы сылвицкой серии (верхний венд Среднего Урала). Екатеринбург: УрО РАН, 2010. 280 с.
- Гражданкин Д.В., Подковыров В.Н., Маслов А.В. Палеоклиматические обстановки формирования верхневендских отложений Беломорско-Кулойского плато (Юго-Восточное Беломорье) // Литология и полез. ископаемые. 2005. № 3. С. 267–280.
- Ивлева А.С., Подковыров В.Н., Ершова В.Б. и др. Результаты U-Pb LA-ICP-MS датирования обломочных цирконов из верхневендско-нижнекембрийских отложений востока Балтийской моноклинали // ДАН. 2016. Т. 468. № 4. С. 441–446.
- Кирьянов В.В. Последовательность комплексов акритарх в пограничных отложениях докембрия–кембрия Восточно-Европейской и Сибирской платформ // III Всесоюз. симпозиум по палеонтологии докембрия и раннего кембрия. Тез. докл. Петрозаводск: ИГ КФ АН СССР, 1987. С. 44–45.
- Кирьянов В.В. Каледонский цикл тектонической истории Украины (кембрий–ранний девон). Кембрийский период // Геологическая история территории Украины. Палеозой / Под ред. П.Д. Цегельнюк. Киев: Наукова думка, 1993. С. 12–24.
- Колесников А.В., Гражданкин Д.В., Маслов А.В. Арумбериеморфные текстуры в верхнем венде Урала // ДАН. 2012. Т. 447. № 1. С. 66–72.
- Коренчук Л.В., Кирьянов В.В. Поздневендский (балтийский) подэтап // Геологическая история территории Украины. Докембрий / Отв. ред. В.А. Рябенко. Киев: Наукова думка, 1993. С. 173–179.
- Кузнецов Н.Б., Алексеев А.С., Белоусова Е.А. и др. Тестирование моделей поздневендской эволюции северо-восточной периферии Восточно-Европейской платформы на основе первых результатов изотопного U/ Pb-датирования (LA-ICP-MS) детритных цирконов из верхневендских песчаников Юго-Восточного Беломорья // ДАН. 2014. Т. 458. № 3. С. 313–317.
- Кузнецов Н.Б., Алексеев А.С., Белоусова Е.А. и др. Первые результаты изотопного U/Pb-датирования (LA-ICP-MS) детритных цирконов из нижнекембрийских песчаников брусовской свиты Юго-Восточного Беломорья: уточнение времени коллизии Балтики и Арктиды // ДАН. 2015. Т. 460. № 3. С. 310–314.
- Кушим Е.А., Голубкова Е.Ю., Плоткина Ю.В. Биостратиграфическое расчленение венд-кембрийских отложений Южного Приладожья // Вестник ВГУ. Серия Геология. 2016. № 4. С. 18–22.
- Маслов А.В., Подковыров В.Н. Редокс-обстановки придонных вод неопротерозойских бассейнов востока и северо-востока Восточно-Европейской платформы // Литосфера. 2015. № 5. С. 30–42.
- Маслов А.В., Гражданкин Д.В., Подковыров В.Н. и др. Состав питающих провинций и особенности геологической истории поздневендского Мезенского бассейна // Литология и полез. ископаемые. 2008. № 3. С. 290–312.
- Менс К., Пиррус Э. Стратиграфические пробелы в разрезе венда и кембрия Северной Прибалтики // Изв. АН ЭССР. Геология. 1987. Т. 36. № 2. С. 49–57.
- Подковыров В.Н., Гражданкин Д.В., Маслов А.В. Литогеохимия тонкозернистых обломочных пород венда южной части Вычегодского прогиба // Литология и полез. ископаемые. 2011. № 5. С. 484–504.
- Страхов Н.М. Проблемы геохимии современного океанского литогенеза. М.: Наука, 1976. 299 с.
- Тейлор С.Р., МакЛеннан С.М. Континентальная кора: ее состав и эволюция. М.: Мир, 1988. 384 с.
- Холодов В.Н., Недумов Р.И. О геохимических критериях появления сероводородного заражения в водах древних водоемов // Изв. АН СССР. Сер. геол. 1991. № 12. С. 74–82.
- Юдович Я.Э., Кетрис М.П. Основы литохимии. СПб.: Наука, 2000. 479 с.
- Algeo T.J., Ingall E. Sedimentary Corg:P ratios, paleocean ventilation, and Phanerozoic atmospheric pO2 // Palaeogeogr. Palaeoclimatol. Palaeoecol. 2007. V. 256. P. 130–155.
- Algeo T.J., Maynard J.B. Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems // Chem. Geol. 2004. V. 206. P. 289–318.
- Anderson R.F, Winckler G. Problems with paleoproductivity proxies // Paleoceanography. 2005. V. 20. PA3012. doi: 10.1029/2004PA001107.
- Averyt K.B., Paytan A. A comparison of multiple proxies for export production in the equatorial Pacific // Paleoceanography. 2004. V. 19. PA4003. doi: 10.1029/2004PA001005.
- Bostrom K. The origin and fate of ferromanganoan active ridge sediments // Stockholm Contrib. Geol. 1973. V. 27. P. 148–243.
- Boyd P., Newton P. Evidence of the potential influence of planktonic community structure on the interannual variability of particulate organic carbon flux // Deep-Sea Res. Part I. 1995. V. 42. P. 619–639.
- Boyd P.W., Newton P.P. Does planktonic community structure determine downward particulate organic carbon flux in different oceanic provinces? // Deep-Sea Res. Part I. 1999. V. 46. P. 63–91.
- Brasier M.D. On mass extinction and faunal turnover near the end of the Precambrian // Mass extinction processes and evidence / Ed. S.K. Donovan. London: Belhaven Press, 1989. P. 73–88.
- Brasier M.D. Background to the Cambrian Explosion // J. Geol. Soc. 1992a. V. 149. P. 585–587.
- Brasier M.D. Paleoceanography and changes in the biological cycling of phosphorus across the Precambrian–Cambrian boundary // Origin and early evolution of the Metazoa / Eds J.H. Lipps, P.W. Signor. N. Y.: Plenum Press, 1992b. P. 483–523.
- Brasier M.D. The basal Cambrian transition and Cambrian bio-events (from Terminal Proterozoic extinctions to Cambrian biomeres) // Global events and event stratigraphy in Phanerozoic / Ed. O.H. Walliser. Berlin: Springer, 1995. P. 113–138.
- Brasier M.D., Lindsay J.F. Did supercontinental amalgamation trigger the “Cambrian Explosion”? // The Ecology of the Cambrian Radiation / Eds A. Zhuravlev, R.Riding. N. Y.: Columbia University Press, 2001. P. 69–89.
- Brumsack H.-J. The trace metal content of recent organic carbon-rich sediments: Implications for Cretaceous black shale formation // Palaeogeogr. Palaeoclimatol. Palaeoecol. 2006. V. 232. P. 344–361.
- Butterfield N.J. Animals and the invention of the Phanerozoic Earth System // Trends in ecology evolution. 2011. V. 26. Р. 81–87.
- Butterfield N.J. Oxygen, animals and aquatic bioturbation: an updated account // Geobiology. 2018. V. 16. P. 3–16.
- Bykova N., Gill B.C., Grazhdankin D. et al. A geochemical study of the Ediacaran discoidal fossil Aspidella preserved in limestones: implications for its taphonomy and paleoecology // Geobiology. 2017. V. 15. P. 572–587.
- Calvert S.E., Pedersen T.F. Geochemistry of recent oxic and anoxic sediments: implications for the geological record // Mar. Geol. 1993. V. 113. P. 67–88.
- Canfield D.E., Poulton S.W., Narbonne G.M. Late-Neoproterozoic deep-ocean oxygenation and rise of animal life // Science. 2007. V. 315. P. 92–95.
- Challands T.J., Armstrong H.A., Maloney D.P., Davies J.R. Organic-carbon deposition and coastal upwelling at mid-latitude during the Upper Ordovician (Late Katian): a case study from the Welsh Basin // Palaeogeogr. Palaeoclimatol. Palaeoecol. 2009. V. 273. P. 395–410.
- Condon D., Zhu M., Bowring S. et al. U–Pb ages from the Neoproterozoic Doushantuo Formation, China // Science. 2005. V. 305. P. 95–98.
- Cui H., Grazhdankin D.V., Xiao S. et al. Redox-dependent distribution of early macro-organisms: evidence from the terminal Ediacaran Khatyspyt Formation in Arctic Siberia // Palaeogeogr. Palaeoclimatol. Palaeoecol. 2016. V. 461. P. 122–139.
- Cui H., Kaufman A.J., Xiao S. et al. Was the Ediacaran Shuram Excursion a globally synchronized early diagenetic event? Insights from methane-derived authigenic carbonates in the uppermost Doushantuo Formation, South China // Chem. Geology. 2017. V. 450. P. 59–80.
- Cullers R.L. Implications of elemental concentrations for provenance, redox conditions, and metamorphic studies of shales and limestones near Pueblo, CO, USA // Chem. Geol. 2002. V. 191. P. 305–327.
- Darroch S.A.F., Sperling E.A., Boag T.H. et al. Biotic replacement and mass extinction of the Ediacara biota // Proc. R. Soc. 2015. B 282. 20151003. URL: http://dx.doi.org/10.1098/rspb.2015.1003 – access 23.07.2018
- Dronov A., Tolmacheva T., Raevskaya E., Nestell M. Cambrian and Ordovician of St. Petersburg region. SPb.: St. Petersburg State Univ., A.P. Karpinsky All Russian Res. Geol. Inst., 2005. 64 p.
- Dymond J., Suess E., Lyle M. Barium in Deep-Sea Sediment: A Geochemical Proxy for Paleoproductivity // Paleoceanography. 1992. V. 7. P. 163–181.
- Einsele G. Sedimentary Basins: Evolution, Facies, and Sedimentary Budget. Berlin, Heidelberg: Springer-Verlag, 2000. 792 p.
- Fedo C.M., Nesbitt H.W., Young G.M. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance // Geology. 1995. V. 23 P. 921–924.
- Fedonkin M.A., Ivantsov A.Yu., Leonov M.V., Serezhnikova E.A. Dynamics of evolution and biodiversity in the late Vendian: a view from the White Sea // The rise and fall of the Vendian (Ediacaran) biota. Origin of the modern biosphere. Transactions of the International Conference on the IGCP Project 493 / Ed. M.A. Semikhatov. Moscow: GEOS, 2007. P. 6–9.
- Fernex F., Février G., Benaïm J., Arnoux A. Copper, lead and zinc trapping in Mediterranean deep-sea sediments: probable coprecipitation with manganese and iron // Chem. Geol. 1992. V. 98. P. 293–308.
- Fike D.A., Grotzinger J.P., Pratt L.M. et al. Oxidation of the Ediacaran Ocean // Nature. 2006. V. 444. P. 744–747.
- Gong Z., Kodama K., Li Y.-X. Rock magnetic cyclostratigraphy of the Doushantuo Formation, South China and its implications for the duration of the Shuram carbon isotope excursion // Precambrian Res. 2017. V. 289. P. 62–74.
- Gooday A.J., Bett B.J., Escobar E. et al. Habitat heterogeneity and its influence on benthic biodiversity in oxygen minimum zones // Mar. Ecol. 2010. V. 31. P. 125–147.
- Grazhdankin D. The Neoproterozoic sedimentation in the Timan foreland // The Neoproterozoic Timanide Orogen of Eastern Baltica / Eds D.G. Gee, V. Pease. Geol. Soc. Lond. Mem. 2004. V. 30. P. 37–46.
- Grazhdankin D. Patterns of evolution of the Edicaran soft-bodied biota // J. Paleontol. 2014. V. 88. P. 269–283.
- Grosjean E., Adam P., Connan P., Albrecht P. Effects of weathering on nickel and vanadyl porphyrins of a Lower Toarcian shale of the Paris basin // Geochim. et Cosmochim. Acta. 2004. V. 68. P. 789–804.
- Grotzinger J.P., Fike D.A., Fischer W.W. Enigmatic origin of the largest-known carbon isotope excursion in Earth’s history // Nature Geoscience. 2011. V. 4. P. 285–292.
- Gupta L.P., Kawahata H. Downcore diagenetic changes in organic matter and implications for paleoproductivity estimates // Global Planet. Change. 2006. V. 53. P. 122–136.
- Hatch J.R., Leventhal J.S. Early diagenetic partial oxidation of organic matter and sulfides in the Middle Pennsylvanian (Desmoinesian) Excell Shale Member of the Fort Scott Limestone and equivalents, northern Midcontinent region, USA // Chem. Geol. 1997. V. 134. P. 215–235.
- Huerta-Diaz M.A., Morse J.W. A quantitative method for determination of trace metal concentrations in sedimentary pyrite // Mar. Chem. 1990. V. 29. P. 119–144.
- Huerta-Diaz M.A., Morse J.W. Pyritisation of trace metals in anoxic marine sediments // Geochim. et Cosmochim. Acta. 1992. V. 56. P. 2681–2702.
- Jarvis I., Burnett W.C., Nathan Y. et al. Phosphorite geochemistry: state of the art and environmental concerns // Eclogae Geol. Helv. 1994. V. 87. P. 643–700.
- Jiang G., Kaufman A.J., Christie-Blick N. et al. Carbon isotope variability across the Ediacaran Yangtze platform in South China: Implications for a large surface-to-deep ocean δ13C gradient // Earth Planet. Sci. Lett. 2007. V. 261. P. 303–320.
- Johnston D.T., Poulton S.W., Goldberg T. et al. Late Ediacaran redox stability and metazoan evolution // Earth Planet. Sci. Lett. 2012. V. 335-336. P. 25–35.
- Jones B., Manning D.A.C. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones // Chem. Geol. 1994. V. 111. P. 111–129.
- Kidder D.L., Krishnaswamy R., Mapes R.H. Elemental mobility in phosphatic shales during concretion growth and implications for provenance analysis // Chem. Geol. 2003. V. 198. P. 335–353.
- Kir’yanov V.V. Stratigraphy of the oldest Cambrian sediments of the East European and Siberian platforms // Геол. журнал. 2006. № 2–3. С. 115–122.
- Kolesnikov A.V., Marusin V.V., Nagovitsin K.E. et al. Ediacaran biota in the aftermath of the Kotlinian Crisis: Asha Group of the South Urals // Precambrian Res. 2015. V. 263. P. 59–78.
- Kolesnikov A.V., Danelian T., Gommeaux M. et al. Arumberiamorph structure in modern microbial mats: implications for Ediacaran palaeobiology // Bull. Soc. géol. France. 2017. V. 188(1-2). Art. 5. doi: 10.1051/bsgf/2017006.
- Lampitt R.S., Antia A.N. Particle flux in deep seas: regional characteristics and temporal variability // Deep-Sea Res. Part I. 1997. V. 44. P. 1377–1403.
- Le Guerroué E. Duration and synchroneity of the largest negative carbon isotope excursion on Earth: The Shuram/Wonoka anomaly // C. R. Geoscience. 2010. V. 342. P. 204–214
- Lenton T., Boyle R.A., Poulton S. W. et al. Co-evolution of eukaryotes and ocean oxygenation in the Neoproterozoic era // Nat. Geosci. 2014. V. 7. P. 257–265.
- Lenton T.M., Daines S.J. Biogeochemical transformations in the history of Earth // Annu. Rev. Mar. Sci. 2017. V. 9. P. 4.1–4.28.
- Lenton T.M., Watson A.J. Redfield Revisited 1. Regulation of Nitrate, Phosphate, and Oxygen in the Ocean // Global Biogeochem. Cycles. 2000. V. 14. P. 225–248.
- Lyons T.W., Reinhard C.T., Planavsky N.J. The rise of oxygen in Earth’s early ocean and atmosphere // Nature. 2014. V. 506. P. 307–315.
- Mackenzie F.T., Ver L.M., Sabine C. et al. C, N, P, S global biogeochemical cycles and modelling of global change // Interactions of C, N, P and S, Biogeochemical Cycles and Global Changes / Eds R. Wollast, F.T. Mackenzie, L. Chou. NATO ASI series. 1993. V. 14. P. 1–61.
- Macdonald F.A., Pruss S.B., Strauss J.V. Trace fossils with spreiten from the late Ediacaran Nama Group, Namibia: complex feeding patterns five million years before the Precambrian–Cambrian boundary // J. Paleontol. 2014. V. 88. P. 299–308.
- McFadden K.A., Huang J., Chu X. et al. Pulsed oxidation and biological evolution in the Ediacaran Doushantuo Formation // Proc. Natl. Acad. Sci. USA. 2008. V. 105. P. 3197–3202.
- McManus J., Berelson W.M., Klinkhammer G.P. et al. Geochemistry of barium in marine sediments: Implications for its use as a paleoproxy // Geochim. et Cosmochim. Acta. 1998. V. 62. P. 3453–3473.
- Meert J.G., Levashova N.M., Bazhenov M.L., Landing E. Rapid changes of magnetic field polarity in the late Ediacaran: linking the Cambrian evolutionary radiation and increased UV-B radiation // Gondwana Res. 2016. V. 34. P. 149–157.
- Michaels A.F., Silver M.W. Primary production, sinking fluxes and the microbial food web // Deep-Sea Res. 1988. V. 35. P. 473–490.
- Mills M.M., Ridame C., Davey M. et al. Iron and phosporus co-limit nitrogen fixation in the eastern tropical North Atlantic // Nature. 2004. V. 429. P. 292–294.
- Minguez D., Kodama K.P., Hillhouse J.W. Paleomagnetic and cyclostratigraphic constraints on the synchroneity and duration of the Shuram carbon isotope excursion, Johnnie Formation, Death Valley Region, CA // Precambrian Res. 2015. V. 266. P. 395–408.
- Morse J.W., Luther III G.W. Chemical influences on trace metal–sulfide interactions in anoxic sediments // Geochim. et Cosmochim. Acta. 1999. V. 63. P. 3373–3378.
- Muscente A.D., Boag T.H., Bykova N., Schiffbauer J.D. Environmental disturbance, resource availability, and biologic turnover at the dawn of animal life // Earth-Sci. Rev. 2018. V. 177. P. 248–264.
- Naimo D., Adamo P., Imperato M., Stanzione D. Mineralogy and geochemistry of a marine sequence, Gulf of Salerno, Italy // Quat. Int. 2005. V. 140–141. P. 53–63.
- Nesbitt H.W., Young G.M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites // Nature. 1982. V. 19. P. 715–717.
- Noble S.R., Condon D.J., Carney J.N. et al. U-Pb geochronology and global context of the Charnian Supergroup, UK: Constraints on the age of key Ediacaran fossil assemblages // GSA Bulletin. 2015. V. 127. P. 250–265.
- Och L.M. Biogeochemical cycling through the Neoproterozoic-Cambrian transition in China: an integrated study of redox-sensitive elements. Ph. D. Thesis: University College London, 2011. 266 p.
- Pedersen T.F., Vogel J.S., Southon J.R. Copper and manganese in hemipelagic sediments: diagenetic contrasts // Geochim. et Cosmochim. Acta. 1986. V. 50. P. 2019–2031.
- Piper D.Z., Perkins R.B. A modern vs. Permian black shale – the hydrography, primary productivity, and water-column chemistry of deposition // Chem. Geol. 2004. V. 206. P. 177–197.
- Planavsky N.J., Rouxel O., Bekker A. et al. The evolution of the marine phosphate reservoir // Nature. 2010. V. 467. P. 1088–1090.
- Plewa K., Meggers H., Kuhlmann H. et al. Geochemical distribution patterns as indicators for productivity and terrigenous input off NW Africa // Deep-Sea Res. Part I. 2012. V. 66. P. 51–66.
- Poulton S.W., Canfield D.E. Ferruginous conditions: a dominant feature of the ocean through Earth’s history // Elements. 2011. V. 7. P. 107–112.
- Rimmer S.M. Geochemical paleoredox indicators in Devonian-Mississippian black shales, Central Appalachian Basin (USA) // Chem. Geol. 2004. V. 206. P. 373–391.
- Robison B.H. Deep pelagic biology // J. Exp. Mar. Biol. Ecol. 2004. V. 300. P. 253–272.
- Robinson C., Steinberg D.K., Anderson T.R. et al. Mesopelagic zone ecology and biogeochemistry – a synthesis // Deep-Sea Res. Part II. 2010. V. 57. P. 1504–1518.
- Rogov V., Marusin V., Bykova N. et al. The oldest evidence of bioturbation on Earth // Geology. 2012. V. 40(5). P. 395–398.
- Rogov V., Marusin V., Bykova N. et al. The oldest evidence of bioturbation on Earth: Reply // Geology. 2013. V. 41(5). e290. doi: 10.1130/G34237Y.1.
- Rothman D.H., Hayes J.M., Summons R.E. Dynamics of the Neoproterozoic carbon cycle // Proc. Natl. Acad. Sci. USA. 2003. V. 100. P. 8124–8129.
- Sahoo S.K., Planavsky N.J., Jiang G. et al. Oceanic oxygenation events in the anoxic Ediacaran ocean // Geobiology. 2016. V. 14. P. 457–468.
- Sawaki Y., Ohno T., Tahata M. et al. The Ediacaran radiogenic Sr isotope excursion in the Doushantuo Formation in the Three Gorges area, South China // Precambrian Res. 2010. V. 176. P. 46–64.
- Schnetger B., Brumsack H.-J., Schale H. et al. Geochemical characteristics of deep-sea sediments from the Arabian Sea: a high-resolution study // Deep-Sea Res. Part II. 2000. V. 47. P. 2735–2768.
- Schrag D.P., Higgins J.A., Macdonald F.A., Johnston D.T. Authigenic carbonate and the history of the global carbon cycle // Science. 2013. V. 339. P. 540–543.
- Seibel B.A. Critical oxygen levels and metabolic suppression in oceanic oxygen minimum zones // J. Exp. Biol. 2011. V. 214. P. 326–336.
- Shaw T.J., Gieskes J.M., Jahnke R.A. Early diagenesis in differing depositional environments: the response of transition metals in pore water // Geochim. et Cosmochim. Acta. 1990. V. 54. P. 1233–1246.
- Shields G.A. Earth system transition during the Tonian–Cambrian interval of biological innovation: nutrients, climate, oxygen and the marine organic carbon capacitor // Earth System Evolution and Early Life: a Celebration of the Work of Martin Brasier / Eds A.T. Brasier, D. McIlroy, N. McLoughlin. Geol. Soc. London Spec. Publ. 2016. V. 448. P. 161–177.
- Sperling E.A., Carbone C., Strauss J.V. et al. Oxygen, facies, and secular controls on the appearance of Cryogenian and Ediacaran body and trace fossils in the Mackenzie Mountains of northwestern Canada // GSA Bulletin. 2016. V. 128. P. 558–575.
- Stoll H.M., Ziveri P., Shimizu N. et al. Relationship between coccolith Sr/Ca ratios and coccolithophore production and export in the Arabian Sea and Sargasso Sea // Deep-Sea Res. Part II. 2007. V. 54. P. 581–600.
- Sun Y.-Z., Püttmann W. The role of organic matter during copper enrichment in Kupferschiefer from the Sangerhausen Basin, Germany // Org. Geochem. 2000. V. 31. P. 1143–1161.
- Sunda W.G. Barber R.T., Huntsman S.A. Phytoplankton growth in nutrient rich seawater-importance of copper-manganese cellular interactions // J. Marine Res. 1981. V. 39. P. 567–586.
- Torres M.E., Brumsack H.J., Bohrmann G., Emeis K.C. Barite fronts in continental margin sediments: a new look at barium remobilization in the zone of sulfate reduction and formation of heavy barites in diagenetic fronts // Chem. Geol. 1996. V. 127. P. 125–139.
- Trappe J. Phanerozoic phosphorite depositional systems: a dynamic model for a sedimentary resource system (Lecture Notes in Earth Sciences. V. 76). Berlin, Heidelberg: Springer-Verlag, 1998. 316 p.
- Tribovillard N., Algeo T.J., Lyons T., Riboulleau A. Trace metals as paleoredox and paleoproductivity proxies: an update // Chem. Geol. 2006. V. 232. P. 12–32.
- Turgeon S., Brumsack H.J. Anoxic vs dysoxic events reflected in sediment geochemistry during the Cenomanian–Turonian boundary events (Cretaceous) in the Umbria–Marche Basin of central Italy // Chem. Geol. 2006. V. 234. P. 321–339.
- Ulloa O., Canfield D.E., DeLong E.F. et al. Microbial oceanography of anoxic oxygen minimum zones // Proc. Natl. Acad. Sci. USA. 2012. V. 109. P. 15996–16003.
- Van der Weijden C.H. Pitfalls of normalization of marine geochemical data using a common divisor // Mar. Geol. 2002. V. 184. P. 167–187.
- Wang W., Guan C., Zhou C. et al. Integrated carbon, sulfur, and nitrogen isotope chemostratigraphy of the Ediacaran Lantian Formation in South China: Spatial gradient, ocean redox oscillation, and fossil distribution // Geobiology. 2017. V. 15. P. 552–571.
- Wedepohl K.H. Environmental influences on the chemical composition of shales and clays // Physics and Chemistry of the Earth / Eds L.H. Ahrens, F. Press, S.K.Runcorn, H.C. Urey. Oxford: Pergamon, 1971. P. 305–333.
- Wedepohl K.H. The composition of the upper Earth’s crust and the natural cycles of selected metals // Metals and Their Compounds in the Environment / Ed. E. Merian. Weinheim: VCH-Verlagsgesellschaft, 1991. P. 3–17.
- Williams G.E., Schmidt P.W. Shuram–Wonoka carbon isotope excursion: Ediacaran revolution in the world ocean’s meridional overturning circulation // Geoscience Frontiers. 2018. V. 9(2). P. 391–402.
- Wright J.J., Konwar K.M., Hallam S.J. Microbial ecology of expanding oxygen minimum zones // Nature Rev. Microbiol. 2012. V. 10. P. 381–394.
- Xiao S., Narbonne G.M., Zhou C. et al. Towards an Ediacaran time scale: problems, protocols, and prospects // Episodes. 2016. V. 39. P. 540–555.
- Yarincik K.M., Murray R.W., Peterson L.C. Climatically sensitive eolian and hemipelagic deposits in the Cariaco Basin, Venezuela, over past 578,000 years: results from Al/Ti and K/Al // Paleoceanography. 2000. V. 15. P. 210–228.
- Yeasmin R., Chen D., Fu Y. et al. Climatic-oceanic forcing on the organic accumulation across the shelf during the Early Cambrian (Age 2 through 3) in the mid-upper Yangtze Block, NE Guizhou, South China // J. Asian Earth Sci. 2017. V. 134. P. 365–386.
- Yuan X., Chen Z., Xiao S. et al. An early Ediacaran assemblage of macroscopic and morphologically differentiated eukaryotes // Nature. 2011. V. 470. P. 390–393.
- Zhu M., Zhang J., Yang A. Integrated Ediacaran (Sinian) chronostratigraphy of South China // Palaeogeogr. Palaeoclimatol. Palaeoecol. 2007. V. 254. P. 7–61.
- Ziveri P., de Bernardi B., Baumann K.-H. et al. Sinking of coccolith carbonate and potential contribution to organic carbon ballasting in the deep ocean // Deep-Sea Res. Part II. 2007. V. 54. P. 659–675.
Supplementary files
