Geology aspects and formation of the erosional structure of Upper Miocene deposits of the Western Cicaucasus

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The results of regional studies of the Early Miocene deposits of the Western Ciscaucasia, carried out on the basis of seismic stratigraphic analysis, are presented. The spatial pattern of sediment accumulation is analyzed and the paleogeographic conditions during the regressive stages of the Late Miocene in the Western Ciscaucasia are clarified. Erosion incisions of several levels were identified, which developed during the fall of the erosion base level during major regressions in the studied time interval. By spatial correlation of paleochannels based on a selected series of intersecting seismic profiles, the buried river valleys of the Paleo-Don and Paleo-Donts were reconstructed and constructed at the Sarmatian‒Meotis boundaries and within the Late Meotis‒Late Pontian interval.

Full Text

Restricted Access

About the authors

I. S. Postnikova

Geological Institute RAS

Author for correspondence.
Email: postnikova_irina1994@mail.ru
Russian Federation, 119017, Moscow, Pyzhevsky lane, 7, bld. 1

I. S. Patina

Geological Institute RAS

Email: irina.patina@gmail.com
Russian Federation, 119017, Moscow, Pyzhevsky lane, 7, bld. 1

G. M. Gorkin

Geological Institute RAS

Email: gorkin_g96@mail.com
Russian Federation, 119017, Moscow, Pyzhevsky lane, 7, bld. 1

References

  1. Атлас палеогеографических карт. Шельфы Евразии в мезозое и кайнозое / Ред. М.Н. Алексеев, А.А. Архангелов. М.: АН СССР, 1991. 104 с.
  2. Атлас литолого-палеогеографических, структурных, палинспастических и геоэкологических карт Центральной Евразии / Ред. Ю.Г. Леонов, В.А. Быкадоров, Ю.А. Волож, Т.Н. Хераскова и др. Алма-Ата: НИИ природных ресурсов ЮГГЕО, 2002.
  3. Горшков А.С., Мейснер Л.Б., Соловьев В.В., Туголесов Д.А., Хахалев Е.М. Геология и тектоника мезокайнозойских отложений Черноморской впадины. М.: Недра, 1985. 215 с.
  4. Кузнецов Н.Б., Романюк Т.В., Данцова К.И., Федюкин И.В., Латышева И.В., Шацилло А.В., Маслова О.А., Полина С.Д. К вопросу о тектонической природе Западно-Кубанского прогиба // Нефтяное хозяйство. 2023. № 9. С. 78‒84. https://doi.org/10.24887/0028-2448-2023-9-78-84
  5. Осадочные бассейны. Методика изучения, строение и эволюция / Под ред. Ю.Г. Леонова, Ю.А. Воложа. М.: Научный мир, 2004. 525 с. (Тр. ГИН РАН. Вып. 543)
  6. Патина И.С., Горкин Г.М., Постникова И.С. Проявления соленовского кризиса на северном шельфе Восточного Паратетиса // Литология и полез. ископаемые. 2024. № 4. С. 418‒428.
  7. Пинчук Т.Н. Литолого-палеографические условия нефтегазоносности неогеновых отложений Западного Предкавказья в связи с цикличностью осадконакопления: специальность 04.00.17 / Дисс. … кандидата геол.-мин. наук. Краснодар, 2000. 186 с. EDN MCTCQY
  8. Пинчук Т.Н., Мальянц А.А., Фурсина А.Б. Осадконакопление понт-мэотических отложений Западно-Кубанского прогиба // Современные проблемы геологии, геофизики и геоэкологии Северного Кавказа // Коллективная монография по материалам XI Всероссийской научно-технической конференции с международным участием. Т. XII. М.: Институт истории естествознания и техники им. С.И. Вавилова РАН, 2022. С. 168‒175. EDN SSUUEN
  9. Попов С.В., Антипов М.П., Застрожнов А.С., Курина Е.Е., Пинчук Т.Н. Колебания уровня моря на северном шельфе Восточного Паратетиса в олигоцене–неогене // Стратиграфия. Геол. корреляция. 2010. Т. 18. № 2. С. 99–124.
  10. Попов С.В., Патина И.С. История Паратетиса // Природа. 2023. № 6(1294). С. 3‒14. https://doi.org/10.7868/S0032874X23060017 EDN LEIOFC
  11. Popov S.V., Rostovtseva Yu.V., Fillippova N.Yu. et al. Paleontology and stratigraphy of the Middle–Upper Miocene of the Taman Peninsula: Part 1. Description of key sections and benthic fossil groups // Paleontol. J. 2016. V. 50(10). P. 1039–1206. https://doi.org/10.1134/S0031030116100014
  12. Popov S.V., Rostovtseva Yu.V., Pinchuk T.N., Patina I.S., Goncharova I.A. Oligocene to Neogene paleogeography and depositional environments of the Euxinian part of Paratethys in Crimean–Caucasian junction // Mar. Pet. Geol. 2019. V. 103. P. 163‒175.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. General scheme of the work area. 1 – areas of modern absence of Sarmatian deposits; 2 – deep wells drilled in the territory of the Western Ciscaucasia; 3 – seismic profiles of the common depth point method; 4 – profiles used as illustrations in the article.

Download (75KB)
3. Fig. 2. Characteristic seismic facies of late Miocene seismic complexes. a – parallel seismic facies of shallow shelf; b, c – erosional incisions of river systems; d – clinoform seismic facies of shelf. 1 – boundaries of seismic complexes; 2 – clinoforms; 3 – boundaries of roof of Meotian seismic complex (a – erosional, b – conformable); 4 – boundaries of roof of Sarmatian seismic complex (a – erosional, b – conformable); 5 – indices of regional reflecting horizons.

Download (185KB)
4. Fig. 3. Fragment of seismostratigraphic profile through the Kopan Depression, demonstrating the inherited structure of erosional incisions. 1 – boundaries of seismic complexes; 2 – boundaries of the roof of the Meotian seismic complex (a – erosional, b – conformable); 3 – boundaries of the roof of the Sarmatian seismic complex (a – erosional, b – conformable); 4 – deformed incision filling complex; 5 – indices of regional reflecting horizons; 6 – wells.

Download (68KB)
5. Fig. 4. Fragment of seismostratigraphic profile across the Timashevskaya Step, demonstrating incised valleys of Sarmatian and Meotian ages. 1 – boundaries of seismic complexes; 2 – boundaries of the roof of the Meotian seismic complex (a – erosional, b – conformable); 3 – boundaries of the roof of the Sarmatian seismic complex (a – erosional, b – conformable); 4 – deformed incision filling complex; 5 – indices of regional reflecting horizons; 6 – wells. For the profile position, see Fig. 1.

Download (83KB)
6. Fig. 5. Fragment of seismostratigraphic profile across the northern edge of the West Kuban trough. 1 – boundaries of seismic complexes; 2 – clinoforms; 3 – boundaries of the roof of the Meotian seismic complex (a – erosional, b – conformable); 4 – boundaries of the roof of the Sarmatian seismic complex (a – erosional, b – conformable); 5 – indices of regional reflecting horizons; 6 – wells. For the position of the profile, see Fig. 1.

Download (82KB)
7. Fig. 6. Paleogeographic schemes. a – transgressive stage of the early-middle Sarmatian time, b – regressive stage at the Sarmatian‒Maeotian boundary. 1 – erosion areas; 2 – areas of compensated (shallow shelf) and avalanche (submerged shelf) sedimentation; 3 – areas of uncompensated sedimentation (depressions and troughs); 4 – deep-sea depression; 5 – areas of modern absence of Sarmatian deposits; 6 – clinoforms; 7 – incised paleoriver valleys and direction of terrigenous material transfer into them; 8 – direction of terrigenous material transfer.

Download (82KB)
8. Fig. 7. Paleogeographic schemes. a – transgressive stage of the Early Maeotian, b – regressive event in the Late Maeotian‒Late Pontic. 1 – erosion areas; 2 – areas of compensated (shallow shelf) and avalanche (submerged shelf) sedimentation; 3 – areas of uncompensated sedimentation (depressions and troughs); 4 – deep-sea basin; 5 – areas of modern absence of Maeotian deposits; 6 – clinoforms; 7 – incised paleoriver valleys and direction of terrigenous material transfer into them; 8 – direction of terrigenous material transfer.

Download (84KB)

Copyright (c) 2024 Russian Academy of Sciences