Geochemical Peculiarities of the Pacific Pleistocene Sediments

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

In the geochemical review based on records from cruises of International project of Deep-Sea Drilling and other literature data concerning main lithologic types of the Pacific Pleistocene sediments we presented tables of average arithmetic chemical composition, meanweighted chemical composition, accumulation rates, and mass accumulation rates of chemical components. These tables can be used for comparative analysis with sediments of the same or other stratons in different oceanic basins and also with paleooceanic sediments on the continents. Terrigenous matrix dominates within lithogenic matter. We discovered a close resemblance between chemical composition of hemipelagic clays and volcanic sediments. Peculiarities of hydrothermal sediments are described. Using methods of mathematical statistics, we revealed main geochemical associations and principal factors determinating the chemical composition of studied sediments. Masses of oxides of petrogenic elements and a number of trace elements have been calculated for Pleistocene sediments. We managed to take an idea about average chemical composition of the Pacific Pleistocene.

全文:

受限制的访问

作者简介

M. Levitan

Vernadsky Institute of Geochemistry and Analytical Chemistry of the RAS

编辑信件的主要联系方式.
Email: m-levitan@mail.ru
俄罗斯联邦, 19, Kosygin St., Moscow, 119991

L. Domaratskaya

Vernadsky Institute of Geochemistry and Analytical Chemistry of the RAS

Email: m-levitan@mail.ru
俄罗斯联邦, 19, Kosygin St., Moscow, 119991

A. Koltsova

Vernadsky Institute of Geochemistry and Analytical Chemistry of the RAS

Email: m-levitan@mail.ru
俄罗斯联邦, 19, Kosygin St., Moscow, 119991

K. Syromyatnikov

Vernadsky Institute of Geochemistry and Analytical Chemistry of the RAS

Email: m-levitan@mail.ru
俄罗斯联邦, 19, Kosygin St., Moscow, 119991

参考

  1. Батурин Г.Н. Геохимия железо-марганцевых конкреций океана. М.: Наука, 1986. 328 с.
  2. Волков И.И., Севастьянова Е.С., Ягодинская Т.А. Фосфор в осадках северо-западной части Тихого океана // Геохимия. 1974. № 9. С. 1297–1309.
  3. Волков И.И., Соколов В.С., Соколова Е.Г., Пилипчук М.Ф. Редкие и рассеянные элементы в осадках северо-западной части Тихого океана // Литология и полез. ископаемые. 1974. № 2. С. 3–22.
  4. Волков И.И., Фомина Л.С. Новые данные по геохимии редкоземельных элементов в осадках Тихого океана // Геохимия. 1973. № 11. С. 1603–1615.
  5. Деков В. Гидротермальное осадкообразование в Тихом океане. М.: Наука, 1994. 208 с.
  6. Дубинин А.В., Римская-Корсакова М.Н. Геохимия редкоземельных элементов в донных отложениях Бразильской котловины Атлантического океана // Литология и полез. ископаемые. 2011. № 1. С. 3–20.
  7. Дубинин А.В., Розанов А.Г. Геохимия редкоземельных элементов и тория в осадках и железо-марганцевых конкрециях Атлантического океана // Литология и полез. ископаемые. 2001. № 3. С. 311–323.
  8. Левитан М.А. Миоцен-четвертичная история кремненакопления в восточной части экваториальной зоны Тихого океана и проблемы реконструкции палеопродуктивности // Литология и полез. ископаемые. 2000. № 5. С. 478–486.
  9. Левитан М.А. Плейстоценовые отложения Мирового океана. М.: РАН, 2021. 408 с.
  10. Левитан М.А. Первые результаты сравнительного анализа химического состава плейстоценовых отложений Индийского и Атлантического океанов // Вестник Московского университета. Сер. 4. Геология. 2024. № 3. С. 54–58.
  11. Левитан М.А., Антонова Т.А., Домарацкая Л.Г. и др. Химический состав плейстоценовых отложений Индийского океана // Литология и полез. ископаемые. 2023. № 5. С. 423–444.
  12. Левитан М.А., Антонова Т.А., Домарацкая Л.Г., Кольцова А.В. Геохимические особенности плейстоценовых отложений Атлантического океана // Литология и полез. ископаемые. 2024. № 3. С. 279–300.
  13. Левитан М.А., Кузьмина Т.Г., Лукша В.Л. и др. Позднеплейстоценовая история осадконакопления на подводном хребте Ширшова (Берингово море) // Геохимия. 2013. № 3. С. 195–228.
  14. Левитан М.А., Кузьмина Т.Г., Лукша В.Л. и др. История седиментации на континентальном склоне Кроноцкого полуострова (Восточная Камчатка) // Литология и полез. ископаемые. 2015. № 4. С. 283–304.
  15. Левитан М.А., Лукша В.Л., Толмачева А.В. История седиментации в северной части Охотского моря в течение последних 1.1 млн лет // Литология и полез. ископаемые. 2007. № 3. С. 227–246.
  16. Лисицын А.П., Богданов Ю.А., Мурдмаа И.О.и др. Металлоносные осадки и их генезис // Геолого-геофизические исследования в восточной части Тихого океана. М.: Наука, 1976. С. 289–379.
  17. Лисицына Н.А., Дворецкая О.А. Литологический профиль через Северо-Западную котловину Тихого океана // Литология и полез. ископаемые. 1972. № 4. С. 3–26.
  18. Лисицына Н.А., Дворецкая О.А., Пушкина З.В., Черкасова Е.В. К геохимии элементов-гидролизатов в осадках Северо-Западной котловины Тихого океана // Литология и полез. ископаемые. 1973. № 6. С. 3–21.
  19. Ронов А.Б., Ярошевский А.А., Мигдисов А.А. Химическое строение земной коры и геохимический баланс главных элементов. М.: Наука, 1990. 183 с.
  20. Свальнов В.Н., Гордеев В.В. Химический состав осадков // Железомарганцевые конкреции центральной части Тихого океана. М.: Наука, 1986. С. 68–88.
  21. Скорнякова Н.С., Мурдмаа И.О. Литолого-фациальные типы глубоководных пелагических (красных) глин Тихого океана // Литология и полез. ископаемые. 1968. № 6. С. 17–37.
  22. Тейлор С.Р., Мак-Леннан С.М. Континентальная кора: ее состав и эволюция. М.: Мир, 1988. 384 с.
  23. Baker P.E., Coltorti M., Briqueu L. et al. Volcanic ash layers from Sites 828, 830, 831, 832, and 833, new Hebrides Island arc // Proc. ODP, Sci. Results. 134. 1994. P. 403–412 (College Station, TX).
  24. Barrett T.J., Friedrichsen H., Fleet A.J. Elemental and stable isotopic composition of some metalliferous and pelagic sediments from the Galapagos mounds area, Deep Sea Drilling Project Leg 70 // Init. Repts. DSDP. 70. 1983. P. 315–323 (U.S. Government Print. Off., Washington DC).
  25. Beck K., Hickey-Vargas R. Composition, age and origin of Pleistocene turbidite deposits at ODP Site 1232, Nazca plate: Implications for volcanism and climate change in central south Chile // J. South Amer. Earth Sci. 2022. V. 118. https://doi.org/10.1016/j.sames.2022.103908
  26. Beiersdorf H., Natland J.H. Sedimentary and diagenetic processes in the central Panama Basin since the Late Miocene: the lithology and composition of sediments from Deep Sea Drilling Project Sites 504 and 505 // Init. Repts. DSDP. 69. 1983. P. 343–383 (U.S. Government Print. Off., Washington DC).
  27. Boström K., Joensuu O., Valdés S. et al. Geochemistry and origin of East Pacific sediments sampled during DSDP Leg 34 // Init. Repts. DSDP. 34. 1976. P. 559–574 (U.S. Government Print. Off., Washington DC).
  28. Bruggmann S., Severmann S., McManus J. Geochemical conditions regulating chromium preservation in marine sediments // Geochim. Cosmochim. Acta. 2023. V. 348. P. 239–257.
  29. Cao L.Q., Arculus R.J., McKelvey B.C. Geochemistry and petrology of volcanic ashes recovered from Sites 881 through 884: a temporal record of Kamchatka and Kurile volcanism // Proc. ODP, Sci. Results.145. 1995. P. 345–381 (College Station, TX).
  30. Corliss J.B., Dymond J., Lopez C. Elemental abundance patterns in Leg 34 rocks // Init. Repts. DSDP. 34. 1976. P. 293–299 (U.S. Government Print. Off., Washington DC).
  31. Cramp A., Lewis C. Data report: Pliocene-Pleistocene-Holocene trace metal data from Holes 794A, 795A, 797A, and 797B // Proc. ODP. 127. 1992. P. 1361–1366 (College Station, TX).
  32. Cronan D.S. Authigenic minerals in deep-sea sediments // The Sea. V. 5. Marine Chemistry / Ed. E.D. Goldberg. N. Y.: Wiley-Interscience, 1974. P. 491–526.
  33. Dean W.E. Inorganic geochemistry of sediments and rocks from the Mid-Pacific mountains and Hess Rise, Deep Sea Drilling Project Leg 62 // Init. Repts. DSDP. 62. 1981. P. 685–710 (U.S. Government Print. Off., Washington DC).
  34. Donnelly T.W. Chemical composition of deep-sea sediments – Sites 9 through 425, Leg 2 through 54, Deep Sea Drilling Project // Init. Repts. DSDP. 54. 1980a. P. 899–949 (U.S. Government Print. Off., Washington DC).
  35. Donnelly T.W. Secondarily modified sediments of the Eastern Pacific: major-element chemistry of Sites 420, 424 and 425, Deep Sea Drilling Project Leg 54 // Init. Repts. DSDP. 54. 1980b. P. 329–338 (U.S. Government Print. Off., Washington DC).
  36. Donnelly T.W., Wallace J.L. Major element chemistry of the Tertiary rocks at Site 317 and the problem of the origin of the nonbiogenic fraction of pelagic sediments // Init. Repts. DSDP. 33. 1976. P. 557–562 (U.S. Government Print. Off., Washington DC).
  37. Dymond J., Corliss J.B., Cobler R. et al. Composition and origin of sediments recovered by deep drilling of sediment mounds, Galapagos spreading center // Init. Repts. DSDP. 54. 1980. P. 899–949 (U.S. Government Print. Off., Washington DC).
  38. Feng J., Li N., Liang J. et al. Discerning the sulfur geochemical features of turbidites and methane-rich sediments from the South China sea // Mar. Petrol. Geol. 2024. V. 160. 106602.
  39. Frakes L.A. Geochemistry of Ross Sea diamicts // Init. Repts. DSDP. 28. 1975. P. 789–794 (U.S. Government Print. Off., Washington DC).
  40. Furuta T., Fujioka K., Arai F. Widespread submarine tephras around Japan – petrographic and chemical properties // Mar. Geol. 1986. V. 72. P. 125–142.
  41. Garcia M.O. Pliocene-Pleistocene volcanic sands from Site 842: products of giant landslides // Proc. ODP, Sci. Results. 136. 1993. P. 53–63 (College Station, TX).
  42. Gradstein F.M., Ogg J.G., Smith A.G.A Geologic Time Scale 2004. Cambridge: Cambridge Univ. Press, 2004. 599 p.
  43. Grechin V.I., Niem A.R., Mahood R.O. et al. Neogene tuffs, ashes, and volcanic breccias from offshore California and Baja California, Deep Sea Drilling Project Leg 63 sedimentation and diagenesis // Init. Repts. DSDP. 63. 1981a. P. 631–657 (U.S. Government Print. Off., Washington DC).
  44. Grechin V.I., Pisciotto K.A., Mahoney J.J. Neogene siliceous sediments and rocks off southern California and Baja California, Deep Sea Drilling Project Leg 63 // Init. Repts. DSDP. 63. 1981b. P. 579–593 (U.S. Government Print. Off., Washington DC).
  45. Gurvich E.G., Levitan M.A., Kuzmina T.G. Chemical composition of Leg 138 sediments and history of hydrothermal activity // Proc. ODP, Sci. Results. 138. 1995. P. 769–778 (College Station, TX).
  46. Heath G.R., Kovar R.B., Lopez C. Geochemistry of sediments at Sites 579, 580, and 581, Deep Sea Drilling Project Leg 86, western north Pacific // Init. Repts. DSDP. 86. 1985a. P. 657–670 (U.S. Government Print. Off., Washington DC).
  47. Heath G.R., Kovar R.B., Lopez C., Campi G.L. Elemental composition of Cenozoic pelagic clays from Deep Sea Drilling Project Sites 576 and 578, Western North Pacific // Init. Repts. DSDP. 86. 1985b. P. 605–646 (U.S. Government Print. Off., Washington DC).
  48. Hiscott R.N., Gill J.B. Major and trace element geochemistry of Oligocene to Quaternary volcaniclastic sands and sandstones from the Izu-Bonin Arc // Proc. ODP, Sci. Results. 126. 1992. P. 467–485 (College Station, TX).
  49. Hoffert M., Person A., Courtois C. et al. Sedimentology, mineralogy and geochemistry of hydrothermal deposits from Holes 424, 424A, 424B and 4424C (Galapagos spreading center) // Init. Repts. DSDP. 54. 1980. P. 339–376 (U.S. Government Print. Off., Washington DC).
  50. Irino T., Pedersen T.F. Geochemical character of glacial to interglacial sediments at Site 1017, southern Californian margin: minor and trace elements // Proc. ODP, Sci. Results. 167. 2000. P. 263–270 (College Station, TX).
  51. Karpoff A.M. The sedimentary deposits of Suiko seamount (Leg 55, Site 433): from the reef environment to the pelagic sedimentation // Init. Repts. DSDP. 55. 1980. P. 491–501 (U.S. Government Print. Off., Washington DC).
  52. Kurnosov V.B., Murdmaa I.O., Kazakova V.P. et al. Mineralogy and inorganic geochemistry of sediments from the mouth of the Gulf of California // Init. Repts. DSDP. 65. 1983. P. 399–424 (U.S. Government Print. Off., Washington DC).
  53. Kuykendall Jr. W.E., Hoffman B.F., Wainerdi R.E. 14-MeV neutron activation analysis of selected Leg 5 core samples // Init. Repts. DSDP. 5. 1971. P. 484–494 (U.S. Government Print. Off., Washington DC).
  54. Lamy F., Hebbeln D., Wefer G. Terrigenous sediment supply along the Chilean continental margin: modern region patterns of texture and composition // Geol. Rundsch. 1998. V. 87. P. 477–494.
  55. Leggett J.K. Geochemistry of Cocos plate pelagic-hemipelagic sediments in Hole 487, Deep Sea Drilling Project Leg 66 // Init. Repts. DSDP. 66. 1982. P. 683–686 (U.S. Government Print. Off., Washington DC).
  56. Lisitsin A.P., Serova V.V., Zverinskaya I.B. et al. Geochemical, mineralogical and paleontological studies // Init. Repts. DSDP. 6. 1971. P. 829–960 (U.S. Government Print. Off., Washington DC).
  57. Lyle M.W. Major element composition of Leg 92 sediments // Init. Repts. DSDP. 92. 1986. P. 355–370 (U.S. Government Print. Off., Washington DC).
  58. Migdisov A.A., Gradusov B.P., Bredanova N.V. et al. Major and minor elements in hydrothermal and pelagic sediments of the Galapagos mounds area, Leg 70, Deep Sea Drilling Project // Init. Repts. DSDP. 70. 1983. P. 277–295 (U.S. Government Print. Off., Washington DC).
  59. Migdisov A.A., Miklishansky A.Z., Saveliev B.S. et al. Neutron activation analysis of rare earth elements and some other trace elements in volcanic ashes and pelagic clays, Deep Sea Drilling Project Leg 59 // Init. Repts. DSDP. 59. 1981. P. 653–668 (U.S. Government Print. Off., Washington DC).
  60. Mimura K., Nakamura K., Yasukawa K. et al. Significant impacts of pelagic clay on average chemical composition of subducting sediments: New insights from discovery of extremely rare-earth elements and yttrium-rich mud at Ocean Drilling Program Site 1149 in the western North Pacific Ocean // J. Asian Earth Sci. 2019. V. 186. 104059.
  61. Minai Y., Matsumoto R., Tominaga T. Geochemistry of deep-sea sediments from the Nankai Trough, the Japan Trench, and adjacent regions // Init. Repts. DSDP. 87. 1986. P. 643–657 (U.S. Government Print. Off., Washington DC).
  62. Minai Y., Matsumoto R., Watanabe Y., Tominaga T. Geochemistry of Rare Earths and other trace elements in sediments from Sites 798 and 799, Japan Sea // Proc. ODP, Sci. Results. 128. 1992. P. 719–737 (College Station, TX).
  63. Moorby S.A., Varnavas S.P., Cronan D.S. Geochemistry of sediments from the East Pacific Rise at 23°N // Init. Repts. DSDP. 65. 1983. P. 425–430 (U.S. Government Print. Off., Washington DC).
  64. Murdmaa I., Gordeev V., Kuzmina T. et al. Geochemistry of the Japan Trench sediments recovered on Deep Sea Drilling Project Legs 56 and 57 // Init. Repts. DSDP. 56–57. 1980. P. 1213–1232 (U.S. Government Print. Off., Washington DC).
  65. Natland J.H. Volcanic ash and pumice at Shatsky Rise: sources, mechanisms of transport, and bearing on atmospheric circulation // Proc. ODP, Sci. Results. 132. 1993. P. 57–66 (College Station, TX).
  66. Nishimura A., Mita N., Nohara M. Pelagic and hemipelagic sediments of the Izu-Bonin region, Leg 126: geochemical and compositional features // Proc. ODP, Sci. Results. 126. 1992. P. 487–503 (College Station, TX).
  67. Ouyang A., Xiong W., Li X. et al. Occurrence and screening-flotation separation for the beneficiation of rare earth elements and yttrium (REY) in core sediments from the Pacific Ocean // Mar. Geol. 2023. V. 462. 107097.
  68. Patience R.L., Clayton C.J., Kearsley A.T. et al. An integrated biochemical, geochemical, and sedimentological study of organic diagenesis in sediments from Leg 112 // Proc. ODP, Sci. Results. 112. 1990. P. 135–153 (College Station, TX).
  69. Ren J., Jiang X., He G. et al. Enrichment and sources of REY in phosphate fractions: Constraints from the leaching of REY-rich deep-sea sediments // Geochim. Cosmochim. Acta. 2022. V. 335. P. 155–168.
  70. Rudnick R.L., Gao S. Composition of continental crust // Treatise of Geochemistry. V. 3. The Crust / Ed. R.L. Rudnick. Amsterdam: Elsevier, 2003. P. 1–64.
  71. Schrader L., Furbish W.J. Geochemistry and carbonate petrology of selected sediment samples from Deep Sea Drilling Project Leg 54, Eastern Pacific // Init. Repts. DSDP. 54. 1980. P. 319–328 (U.S. Government Print. Off., Washington DC).
  72. Varentsov I.M. Geochemical history of post-Jurassic sedimentation in the central northwestern Pacific, southern Hess Rise, Deep Sea Drilling Project Site 465 // Init. Repts. DSDP. 62. 1981a. P. 805–818 (U.S. Government Print. Off., Washington DC).
  73. Varentsov I.M. Geochemical history of post-Jurassic sedimentation in the central northwestern Pacific, southern Hess Rise, Deep Sea Drilling Project Site 466 // Init. Repts. DSDP. 62. 1981b. P. 819–832 (U.S. Government Print. Off., Washington DC).
  74. Varentsov I.M., Sakharov B.A., Drits V.A. et al. Hydrothermal deposits of the Galapagos Rift zone, Leg 70: mineralogy and geochemistry of major components // Init. Repts. DSDP. 70. 1983. P. 235–268 (U.S. Government Print. Off., Washington DC).
  75. Varentsov I.M., Timofeev P.P., Rateev M.A. Geochemical history of post-Jurassic sedimentation in the central northwestern Pacific, western Mid-Pacific mountains, Deep Sea Drilling Project Site 463 // Init. Repts. DSDP. 62. 1981. P. 785–804 (U.S. Government Print. Off., Washington DC).
  76. Watanabe T., Kagami S., Niwa M. Geochemical and heavy mineral signatures of marine incursions by a paleotsunami on the Miyazaki plain along the Nankai–Suruga Trough, the Pacific coast of southwest Japan // Mar. Geol. 2022. V. 444. 106704.
  77. Yasukawa K., Nakamura K., Fujinaga K. et al. Rare-earth, major and trace element geochemistry of deep-sea sediments in the Indian Ocean: implications for the potential distribution of REE-rich mud in the Indian Ocean // Geochem. J. 2015. V. 49. P. 621–635.
  78. Zheng L., Minami T., Takano S., Sohrin Y. Distributions of aluminum, manganese, cobalt, and lead in the western South Pacific: Interplay between the South and North Pacific // Geochim. Cosmochim. Acta. 2022. V. 338. P. 105–120.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Location of deepwater drilling boreholes in which Pleistocene sediments were characterised by chemical analyses.

下载 (1MB)
3. Fig. 2. Spider diagram of the chemical composition of Pleistocene sediments in relation to the PAAS composition. 1 - pelagic clays; 2 - hemipelagic clays; 3 - volcanogenic sediments; 4 - hydrothermal sediments; 5 - carbonate-free matter (bqv) of coccolithic silts and clays; 6 - carbonate-free matter (bqv) of coccolithic foraminiferous silts and clays; 7 - diatom silts and clays; 8 - diatom-radiolarian silts and clays.

下载 (955KB)
4. Fig. 3. Spider diagram of rare earth elements composition in relation to PAAS composition. a - in a number of Pleistocene lithogenic sediments (1 - pelagic clays, 2 - hemipelagic clays, 3 - marine sands, 4 - volcanogenic deposits, 5 - hydrothermal deposits); b - in biogenic sediments (1 - coccolithic muds and clays, 2 - coccolithic-foraminiferal muds and clays, 3 - diatom muds and clays).

下载 (497KB)
5. Fig. 4. Spider diagram of the chemical composition of Pleistocene sediments in relation to the UCC composition. 1 - terrigenous turbidites; 2 - marine sands; 3 - volcanogenic sediments; 4 - hydrothermal sediments.

下载 (794KB)
6. Fig. 5. Results of factor analysis.

下载 (982KB)
7. Fig. 6. Cyclograms of the weighted average chemical composition of Pleistocene sediments (in %). 1 - pelagic clays; 2 - hemipelagic clays; 3 - terrigenous turbidites; 4 - marine sands; 5 - volcanogenic sediments; 6 - coccolithic silts and clays; 7 - coccolithic foraminiferal silts and clays; 8 - diatom muds and clays; 9 - diatom-radiolarian muds and clays; 10 - benthic carbonates and carbonate-clastic sediments; 11 - carbonate turbidites.

下载 (822KB)
8. Fig. 7. Cyclograms of absolute masses of Pleistocene sediments (in conventional units). 1 - pelagic clays; 2 - hemipelagic clays; 3 - terrigenous turbidites; 4 - volcanogenic-clastic sediments and volcanic ashes; 5 - coccolithic clays and silts; 6 - coccolithic-foraminiferous clays and silts; 7 - benthic and carbonate-clastic sediments; 8 - diatom clays and silts; 9 - diatom-radiolarian clays and silts.

下载 (942KB)

版权所有 © Russian academy of sciences, 2025