Age of Detritic Zircon and Composition of Cambrian-Ordovician Terrigenous-Carbonate Deposits in the Middle Reach of the Vilyui River (South of the Siberian Platform)

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

The article presents result of lithological and mineralogical studies of Upper Cambrian and Lower Ordovician terrigenous-carbonate deposits within the Vilyui syneclise (the middle reaches of the Vilyui River, south of the Siberian platform). The composition of detritic zircon, garnet, tourmaline and chromium spinels were carried out in a sample from the Upper Cambrian Kholomolokh Formation and two samples from the Balyktakh Formation (Upper Cambrian–Lower Ordovician). Predominant sources of the detritic minerals were igneous and metamorphic rocks of the Archean–Paleoproterozoic basement of the Siberian platform: rocks of acidic and intermediate compositions, amphibolite-facies metasediments and granulite- and amphibolite-facies mafic-ultramafic complexes. Results of U-Th-Pb dating of zircon from the Kholomolokh and Balyktakh Formations of the middle reaches of the Vilyui River showed a noticeable difference in the demolition sources of terrigenous matter in the Late Cambrian and Ordovician times. The sample from the Upper Cambrian Kholomolokh Formation contains the youngest zircon with a predominance of Neoproterozoic ages (peak ages of 550 and 845 Ma) indicating the main source of demolition in the Late Cambrian time were Neoproterozoic terranes rocks which are widespread along the southern margin of the Siberian craton. The Early Ordovician rocks of the Balyktakh Formation contain the main zircon population (~70%) of the Paleoproterozoic (1880–1890 Ma) age. The Early Ordovician the most probable source of matter for the Vilyui syneclise was an uplift of the Archean-Paleoproterozoic basement in the Siberian platform central part that represented an eroded land during the Ordovician. The almost complete absence of younger zircon (~500–900 million years) in the Balyktakh deposits indicates a weak influence of the demolition source from the southeastern margin of the Siberian platform in the Ordovician time.

全文:

受限制的访问

作者简介

A. Zaytsev

Geological Institute of the RAS

编辑信件的主要联系方式.
Email: a.v.zaitsev@bk.ru
俄罗斯联邦, Bldg. 1, 7, Pyzhevsky Lane, Moscow, 119017

K. Dokukina

Geological Institute of the RAS

Email: dokukina@mail.ru
俄罗斯联邦, Bldg. 1, 7, Pyzhevsky Lane, Moscow, 119017

I. Baksheev

Lomonosov Moscow State University

Email: ivan.baksheev@gmail.com
俄罗斯联邦, 1, Leninskie Gory, Moscow, 119991

参考

  1. Барабошкин Е.Ю. Практическая седиментология. Терригенные резервуары. Пособие по работе с керном. Тверь: ООО “Издательство ГЕРС”, 2011. 152 с.
  2. Бергер А.Я., Ковалевская Е.О., Тесаков Ю.И. и др. Пограничные отложения ордовика и силура в междуречье Оленека, Мархи и Моркоки (северо-восток Сибирской платформы) // Региональная геология и металлогения. 2014. № 58. С. 54–58.
  3. Геологическая карта СССР масштаба 1 : 200 000. Серия Верхне-Вилюйская. Лист P-49-XII. Объяснительная записка / Сост. Е.В. Тихомирова. М.: Недра, 1964. 110 с.
  4. Геологическая карта СССР масштаба 1 : 200 000. Серия Верхне-Вилюйская. Лист P-50-XIII. Объяснительная записка / Сост. Н.В. Кинд, М.П. Метелкина, В.В. Юдина. М., 1960. 74 с.
  5. Государственная геологическая карта Российской Федерации. Масштаб 1 : 200 000. Серия Верхневилюйская. Лист P-50-II. Объяснительная записка / Сост. Ю.А. Дукарт, Д.В. Блажкун. СПб., 2001. 101 с.
  6. Гроссгейм В.А., Бескровная О.В., Геращенко И.Л. и др. Методы палеогеографических реконструкций (при поисках залежей нефти и газа). Л.: Недра, 1984. 271 с.
  7. Дронов А.В. Колебания уровня моря в раннем ордовике и их отражение в темпеститовых разрезах восточной части глинта // Бюлл. МОИП. Отд. геол. 1999. Вып. 4. Т. 74. С. 39–47.
  8. Зайцев А.В., Барабошкин Е.Ю. Стратиграфические перерывы в латорпско-кундаских отложениях (нижний‒средний ордовик) центральной и восточной частей Балтийско-Ладожского глинта // Вестник Московского университета. Сер. 4. Геология. 2006. № 3. С. 12–32.
  9. Каныгин А.В., Ядренкина А.Г., Тимохин А.В. и др. Стратиграфия нефтегазоносных бассейнов Сибири. Ордовик Сибирской платформы. Новосибирск: “Гео”, 2007. 267 с.
  10. Каулина Т.В. Образование и преобразование циркона в полиметаморфических комплексах. Апатиты: Изд-во Кольского научного центра РАН, 2010. 144 с.
  11. Кочнев Б.Б., Прошенкин А.И. Детритовые цирконы из рифейских и вендских отложений центральных и северо-восточных районов Сибирской платформы // Осадочные бассейны, седиментационные и постседиментационные процессы в геологической истории. Материалы VII Всероссийского литологического совещания (Новосибирск, 28–31 октября 2013 г.). Новосибирск: ИНГГ СО РАН, 2013. Т. II. С. 79–83.
  12. Крашенинников Г.Ф., Волкова А.Н., Иванова Н.В. Учение о фациях с основами литологии. Руководство к лабораторным занятиям. М.: Изд-во МГУ, 1988. 214 с.
  13. Летникова Е.Ф., Кузнецов А.Б., Вишневская И.А. и др. Вендская пассивная континентальная окраина юга Сибирской платформы: геохимические, изотопные (Sr, Sm-Nd) свидетельства, данные U-Pb датирования LA-ICP-MS детритовых цирконов // Геология и геофизика. 2013. Т. 54. № 10. С. 1507–1529.
  14. Люфанов Л.Е. Стратиграфия палеозоя и мезозоя бассейна р. Ыгыатты (западная окраина Вилюйской впадины) // Сборник статей молодых научных сотрудников Ленинградских геологических учреждений. Вып. 1 / Отв. ред. С.С. Кузнецов. М., Л.: Изд-во АН СССР, 1958. С. 91–131.
  15. Макpыгина В.А., Беличенко В.Г., Pезницкий Л.З. Типы палеооcтpовныx дуг и задуговыx баccейнов cевеpо-воcточной чаcти Палеоазиатcкого океана (по геоxимичеcким данным) // Геология и геофизика. 2007. Т. 48. № 1. С. 141–155.
  16. Мельников Н.В., Якшин М.С., Шишкин Б.Б. и др. Стратиграфия нефтегазоносных бассейнов Сибири. Рифей и венд Сибирской платформы и ее складчатого обрамления. Новосибирск: “Гео”, 2005. 428 с.
  17. Михайлов М.В., Тесаков Ю.И. Стратиграфия верхнего кембрия, ордовика и силура бассейна среднего течения р. Вилюй // Геология и геофизика. 1972. № 1. С. 32–42.
  18. Покровский Б.Г., Зайцев А.В., Буякайте М.И. и др. С–O–Sr–S-изотопная геохимия и хемостратиграфическая корреляция ордовикских отложений вилюйской структурно-фациальной зоны, Сибирская платформа // Литология и полез. ископаемые. 2022. № 6. С. 1–27.
  19. Покровский Б.Г., Зайцев А.В., Дронов А.В. и др. Геохимия изотопов C, O, S, Sr и хемостратиграфия отложений ордовика в разрезе р. Мойеро, север Сибирской платформы // Литология и полез. ископаемые. 2018. № 4. С. 1–27.
  20. Рейнек Г.Э., Сингх И.Б. Обстановки терригенного осадконакопления. М.: Недра, 1981. 440 с.
  21. Розен О.М. Сибирский кратон: тектоническое районирование и этапы эволюции // Геотектоника. 2003. № 3. С. 3–21.
  22. Розен О.М., Манаков А.В., Зинчук Н.Н. Сибирский кратон: формирование, алмазоносность. М.: Научный мир, 2006. 212 с.
  23. Романюк Т.В., Кузнецов Н.Б., Белоусова Е.А. и др. Палеотектонические и палеогеографические обстановки накопления нижнерифейской айской свиты Башкирского поднятия (Южный Урал) на основе изучения детритовых цирконов методом “TERRANECHRONE®” // Геодинамика и тектонофизика. 2018. Т. 9. № 1. С. 1–37.
  24. Сухов С.С. Стратиграфия нефтегазоносных бассейнов Сибири. Кембрий Сибирской платформы. Т. 1. Стратиграфия. Новосибирск: ИНГГ СО РАН, 2016. 497 с.
  25. Тесаков Ю.И., Занин Ю.Н., Малич Н.С. и др. Стратиграфия ордовика Сибирской платформы. Новосибирск: Наука, 1975. 254 с.
  26. Федоровский В.С., Владимиров А.Г., Хаин Е.В. и др. Тектоника, метаморфизм и магматизм коллизионных зон каледонид Центральной Азии // Геотектоника. 1995. № 3. С. 3–22.
  27. Эволюция южной части Сибирского кратона в докембрии / Научный ред. Е.В. Скляров. Институт земной коры СО РАН и др. Новосибирск: Изд-во СО РАН, 2006. 367 с.
  28. Aubrecht R., Meres S., Sykora M. et al. Provenance of the detrital garnets and spinels from the Albian sediments of the Czorsztyn Unit (Pieniny Klippen Belt, Western Carpathians, Slovakia) // Geol. Carpath. 2009. V. 60. P. 463–483.
  29. Barnes S.J., Roeder P.L. The range of spinel composition in terrestrial mafic and ultramafic rocks // J. Petrology. 2001. V. 42. № 12. P. 2279–2302.
  30. Corfu F., Hanchar J.M., Hoskin P.W.O. et al. / Eds J.M. Hanchar, P.W.O. Hoskin // Zircon // Review in Mineralogy and Geochemistry. 2003. V. 53. P. 469–500.
  31. Dick H.J.B., Bullen T. Chromian spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas // Ibid. 1984. V. 86. P. 54–76.
  32. Dickinson W.R., Suczek C.A. Plate tectonics and sandstone compositions // Am. Assoc. Pet. Geol. Bull. 1979. V. 63. P. 2164–2182.
  33. Dickinson W.R., Beard L., Brakenridge G.R. et al. Provenance of North American Phanerozoic sandstones in relation to tectonic setting // Bull. Geol. Soc. Am. 1983. V. 94. P. 222–235.
  34. Fedorovsky V.S., Donskaya T.V., Gladkochub D.P. et al. The Ol’khon collision system (Baikal region) // Structural and tectonic correlation across the Central Asia orogenic collage: North-Eastern segment (Guidebook and abstract volume of the Siberian Workshop IGCP-480) / Ed. E.V. Sklyarov. Irkutsk, 2005. P. 5–76.
  35. Folk R.L. Petrology of Sedimentary Rocks / 2nd ed. Austin, Texas: Hemphill Press, 1980. 184 p.
  36. Franseen E.K., Byrnes A.P., Cansler J.R. et al. The Geology of Kansas – Arbuckle Group // Current Research in Earth Sciences. 2004. V. 250. P. 1–43.
  37. https://doi.org/10.17161/cres.v0i250.11789
  38. Gladkochub D.P., Motova Z.L., Donskaya T.V. et al. Cambrian/Ordovician boundary as a milestone in the sedimentation history of the southern Siberian craton: Evidence from U-Pb dating of detrital zircons // Journal of Asian Earth Sciences: X. 2022. V. 8. 100107.
  39. https://doi.org/10.1016/j.jaesx.2022.100107
  40. Gladkochub D.P., Stanevich A.M., Mazukabzov A.M. et al. Early evolution of the Paleoasian ocean: LA-ICP-MS dating of detrital zircon from Late Precambrian sequences on the southern flank of the Siberian craton // Russian Geology and Geophysics. 2013. V. 54. P. 1150–1163.
  41. Glorie S., De Grave J., Buslov M.M. et al. Detrital zircon provenance of early Palaeozoic sediments at the southwestern margin of the Siberian Craton: Insights from U–Pb geochronology // Journal of Asian Earth Sciences. 2014. V. 82. P. 115–123.
  42. Geologic Time Scale 2020 / Eds F.M. Gradstein, J.G. Ogg, M.D. Schmitz, G.M. Ogg. Boston, USA: Elsevier, 2020. V. 1. 561 p.
  43. Henry D.J., Novák M., Hawthorne F.C. et al. Nomenclature of the tourmaline-supergroup minerals // Am. Mineral. 2011. V. 96. P. 895–913.
  44. Henry D.J., Guidotti C.V. Tourmaline as a petrogenetic indicator mineral: an example from the staurolite-grade metapelites of NW Maine // Am. Mineral. 1985. V. 70. P. l–15.
  45. Hirose K., Kawamoto T. Hydrous partial melting of lherzolite at 1 Gpa: the effect of H2O on the genesis of basaltic magmas // Earth Planet. Sci. Lett. 1995. V. 133. P. 463–473.
  46. Hoskin P.W.O., Black L.P. Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon // J. Metamorph. Geol. 2000. V. 18. P. 423–439.
  47. Jackson S.E., Pearson N.J., Griffin W.L. et al. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology // Chem. Geol. 2004. V. 211. P. 47–69.
  48. Jahn B.-M., Gruau G., Capdevila R. et al. Archean crustal evolution of the Aldan Shield, Siberia: geochemical and isotopic constraints // Precambrian Res. 1998. V. 91. P. 333–363.
  49. Knierzinger W., Wagreich M., Kiraly F. et al. TETGAR_C: a novel three-dimensional (3D) provenance plot and calculation tool for detrital garnets // J. of Geosciences. 2019. V. 64. P. 127–148.
  50. Koreshkova M.Yu., Downes H., Nikitina L.P. et al. Trace element and age characteristics of zircons in granulite xenoliths from the Udachnaya kimberlite pipe, Siberia // Precambrian Res. 2009. V. 168. P. 197–212.
  51. Kröner A., Fedotova A.A., Khain E.V. et al. Neoproterozoic ophiolite and related high-grade rocks of the Baikal–Muya belt, Siberia: Geochronology and geodynamic implications // Journal of Asian Earth Sciences. 2015. V. 111. P. 138–160.
  52. Mange M.A., Morton A.C. Geochemistry of heavy minerals / Eds M.A. Mange, D.T. Wright // Heavy Minerals in Use. Developments in Sedimentology. V. 58. Amsterdam: Elsevier, 2007. P. 345–391.
  53. Méres Š. Garnets – an important information resource about source area and parent rocks of siliciclastic sedimentary rocks // Conference “Cambelové dni 2008”. Abstract Book / Ed. Ľ. Jurkovič. Bratislava: Comenius University, 2008. P. 37–43. (in Slovak with English summary)
  54. Morton A.C., Hallsworth C.R. Stability of Detrital Heavy Minerals during Burial Diagenesis // Heavy Minerals in Use / Eds M.A. Mange, D.T. Wright / Developments in Sedimentology. 2007. V. 58. P. 215‒245.
  55. Motova Z.L., Donskaya T.V., Gladkochub D.P. et al. U-Pb ages of detrital zircons and composition of clastic sedimentary rocks from the southern periphery of the Siberian craton: Implications for the earliest Cambrian evolution of southern Siberia // Journal of Asian Earth Sciences. 2024. V. 264. 106048.
  56. Nielsen A.T. Trilobite systematics, biostratigraphy and palaeoecology of the Lower Ordovician Komstad Limestone and Huk Formations, southern Scandinavia // Fossils and Strata. V. 38. Oslo, Norway: Scandinavian University Press, 1995. 374 p.
  57. Owen M.R. Hafnium content of detrital zircons, a new tool for provenance study // J. Sediment. Petrol. 1987. V. 57. P. 824–830.
  58. Paquette J.L., Ionov D.A., Agashev A.M. et al. Age, provenance and Precambrian evolution of the Anabar shield from U-Pb and Lu-Hf isotope data on detrital zircons, and the history of the northern and central Siberian craton // Precambrian Res. 2017. V. 301. P. 134–144.
  59. Pober E., Faupl P. The chemistry of detrital chromian spinels and its implications for the geodynamic evolution of the Eastern Alps // Geol. Rundsch. 1988. V. 77. P. 641–670.
  60. Reddy S.M., Evans D.A.D. Palaeoproterozoic supercontinents and global evolution: correlations from core to atmosphere // Geol. Soc. Spec. Pub. 2009. V. 323. P. 1–26.
  61. Rubatto D. Zircon trace element geochemistry: partitioning with garnet and the link between U–Pb ages and metamorphism // Chem. Geol. 2002. V. 184. P. 123–138.
  62. Sal’nikova E.B., Kotov A.B., Levitskii V.I. et al. Age Constraints of High-Temperature Metamorphic Events in Crystalline Complexes of the Irkut Block, the Sharyzhalgai Ledge of the Siberian Platform Basement: Results of the U–Pb Single Zircon Dating // Stratigraphy and Geological Correlation. 2007. V. 15. № 4. P. 343–358.
  63. Schaltegger U., Fanning C.M., Günther D. et al. Growth, annealing and recrystallization of zircon and preservation of monazite in high-grade metamorphism: conventional and in-situ U-Pb isotope, cathodoluminescence and microchemical evidence // Contrib. Mineral. Petrol. 1999. V. 134. P. 186–201.
  64. Sláma J., Košler J., Condon D.J. et al. Plešovice zircon – a new natural reference material for U-Pb and Hf isotopic microanalysis // Chem. Geol. 2008. V. 249. P. 1–35.
  65. Trela W. Ordovician sea-level changes in the Malopolska Block (south-eastern Poland) // WOGOGOB – 2004: Conference materials. Tartu, 2004. P. 96–97.
  66. Turkina O.M., Urmantseva L.N., Berezhnaya N.G. et al. Paleoproterozoic Age of the Protoliths of Metaterrigenous Rocks in the East of the Irkut Granulite-Gneiss Block (Sharyzhalgai Salient, Siberian Craton) // Stratigraphy and Geological Correlation. 2010. V. 18(1). P. 16–30.
  67. Uher P., Černý P. Accessory zircon in Hercynian granitic pegmatites of the Western Carpathians, Slovakia // Geol. Carpath. 1998. V. 49. P. 261–270.
  68. Vanguestaine M., Servais T. Early Ordovician acritarchs of the Lierneux Member (Stavelot Inlier, Belgium): stratigraphy and palaeobiogeography // Bull. Soc. Geol. Fr. 2002. V. 173(6). P. 561–568.
  69. Vavra G., Gebauer D., Schmid R. et al. Multiple zircon growth and recrystallization during polyphase Late Carboniferous to Triassic metamorphism in granulites of the Ivrea Zone (southern Alps): an ion microprobe (SHRIMP) study // Contrib. Mineral. Petrol. 1996. V. 122. P. 337–358.
  70. Whitehouse M.J., Kamber B.S. A rare earth element study of complex zircons from early Archaean Amîtsoq gneisses, Godthåbsfjord, south-west Greenland // Precambrian Res. 2003. V. 126. P. 363–377.
  71. Whitney D.L., Evans B.W. Abbreviations for names of rock-forming minerals // Am. Mineral. 2010. V. 95. P. 185–187.
  72. Wiedenbeck M.P.A., Corfu F., Griffin W.L. et al. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses // Geostand. Geoanalytical Res. 1995. V. 19. P. 1–23.
  73. Zaitsev A., Ziyatdinova I., Kosorukov V. Carbonate microfacies analysis and mineral composition of the Middle-Upper Ordovician succession of the Moyero River section, NE of Siberian Platform // GeoScience. 2017. V. 2. P. 39–44.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Schematic map of Russia with the Siberian Platform boundary (a) and scheme of the middle course of the Vilyui River (b); simplified geological map of the studied area according to [Geological ..., 1960; Geological ..., 1964; Mikhailov and Tesakov, 1972; State ..., 2001] (c); outcrop of the middle part of the Balyktakh Formation on the left bank of the Vilyui River, 4-5 km upstream of the mouth of the Kuranakh River (d); summary stratigraphic column of the Lower Paleozoic sediments of the middle course of the Vilyui River (e). Vilyui, 4-5 km upstream of the mouth of the Kuranakh River (d); a summary stratigraphic column of the Lower Paleozoic sediments of the middle reaches of the Vilyui River (according to [Pokrovskii et al, 2022] with modifications) and their correlation with local (black line, according to [Pokrovsky et al., 2022]) and global (red line, according to [Geologic ..., 2020]) carbon-isotope curves (e). Positive (red) and negative (blue) global carbon-isotope excursions: Tremadocian (TSICE); Lower Middle Ordovician (Dapine) negative excursion (BDNICE); Middle Darryville (MDICE); Guttenbergian (GICE); Hirnantian (HICE). a, b - schemes: 1 - territory of the Siberian Platform, 2 - major rivers, 3 - roads: main (a) and local roads (b), 4 - settlements, 5 - boundaries of the studied area; c - geological map: 6 - Lower-Middle Cambrian, 7 - Upper Cambrian-Lower Ordovician, 8 - Lower Ordovician, 9 - Middle-Upper Ordovician, 10 - Upper Ordovician, Oyusut Formation, 11 - Lower Silurian, 12 - Upper Devonian, 13 - Upper Permian, 14 - Lower Jurassic, 15 - Quaternary sediments, 16 - Traps, 17 - discontinuities: authentic (a) and inferred (b), 18 - water areas (rivers), 19 - number and location of outcrop: VY01 - Kholomolokh Formation, VY02 - Balyktakh Formation; e - lithology: 20 - limestones, 21 - clayey limestones and marls, 22 - dolomitic limestones, 23 - alternation of dolomites, gypsum, limestones, marls and clays, 24 - dolomites, 25 - clays and siltstones, 26 - grey, reddish, clayey and sandy dolomites of the Kholomolokh Formation.

下载 (918KB)
3. Fig. 2. Microphotographs of sandy dolomites of the Kholomolokhskaya (a-c) and Balyktakhskaya (d-i) formations in parallel (a, b, d, e, g, h) and crossed (c, e, i) nicols of the polarisation microscope. Major mineral components: Dol - dolomite, Qtz - quartz, Kfs - potassium feldspar, Fe - iron oxides and hydroxides. Hereinafter mineral indices are given according to [Whitney, Evans, 2010].

下载 (940KB)
4. Fig. 3. Mineral composition of terrigenous sandy admixture of the studied samples on classification diagrams. a - ratio of quartz (Q), feldspars (F) and rock fragments (L) content, according to [Folk, 1980]): 1 - quartzarenites, 2 - subarcoses, 3 - sublitharenites, 4 - arkoses, 5 - litharcoses, 6 - feldspar litharenites, 7 - litharenites; b - ratio of the content of polycrystalline quartz, including quartzites (Qt), feldspars (F) and rock fragments (L), according to [Dickinson, Suczek, 1979; Dickinson et al, 1983]; c - ratio of monocrystalline quartz (Qm), feldspars (F) and fragments of reworked rocks (Lt), according to [Dickinson, Suczek, 1979; Dickinson et al., 1983]. 1-3 - origin of clastic material: 1 - continental block, 2 - volcanic arc, 3 - reworked orogen. Numbers (in the figure) indicate the types of drift sources: 1 - intracratonic, 2 - marginal seas, 3 - basement uplifts, 4 - mixed, 5 - quartz reworked, 6 - transitional reworked, 7 - lithic reworked.

下载 (563KB)
5. Fig. 4. Backscattered electron images of the main morphological types of garnet grains from the Kholomolokhskaya (a-d) and Balyktakhskaya (f-m) formations. a - garnet with a border of calcite and dolomite, b-d - fractured grains, f-i - medium-rolled non-zonal, weakly fractured grains, k-m - medium-good-rolled non-zonal or weakly-zoned rounded and elongated-rounded, non-fractured grains. Mineral inclusions: Dol - dolomite, Cal - calcite, Qtz - quartz, Ce, La - phosphates of Ce and La, Rt - rutile, Zrn - zircon, Kfs - potassium feldspar, Chl - chlorite. Black and white circles show the place of analysis on the scanning electron microscope (spot diameter 3 µm). The scale bar is 50 µm.

下载 (743KB)
6. Fig. 5. Triangular discriminative diagrams (mol %) for the studied garnet. (a) - Alm + Sps-Prp-Grs diagram [Mange, Morton, 2007]: A - granulite facies metapelites, charnokites and igneous rocks of medium acidic composition, B - amphibolite facies metapelites, Bi - igneous rocks of medium acidic composition, Ci - metabasites of high degrees of metamorphism, Cii - high-magnesian meta-ultramafics (metapyroxenites and metaperidotites), D - metasomatic rocks, metabasites of low degrees of metamorphism, granulites and calcareous-silicate rocks formed in granulite facies of ultrahigh temperature metamorphism. (b, c) - diagrams Alm-Prp-Grs (b) and Alm-Prp-Sps (c) ([Méres, 2008; Aubrecht et al., 2009], modified from [Knierzinger et al., 2019]). A - garnets from high and ultrahigh-pressure rocks, B - garnets from metamorphic rocks of eclogite and granulite facies, C - garnets from rocks of amphibolite facies. Transitional field C1 includes garnets from rocks metamorphosed at higher levels of amphibolite and granulite facies, while field C2 includes garnets from rocks of amphibolite facies, blue schists, skarns, serpentinites and igneous rocks. The numbered fields are: 1 - ultra-high-bar eclogites or garnet peridotites, 2 - high-bar eclogites and basic granulites, 3 - granulites of acidic and medium composition, 4 - gneisses formed in transitional conditions between granulite and amphibolite facies, 5 - amphibolites formed in transitional conditions between granulite and amphibolite facies, 6 - gneisses of amphibolite facies, 7 - amphibolites. (d) - distribution of selected garnet groups in samples. 1 - group I, 2 - group II, 3 - subgroup IIIa, 4 - subgroup IIIb, 5 - group IV.

下载 (823KB)
7. Fig. 6. Backscattered electron images of the main morphological types of tourmaline grains. a, b, d - rounded and elongated-rounded non-cracked or slightly cracked grains with concentric, rarely polygonal zoning from the Kholomolokhsky Formation (sample VY10/16); c - strongly cracked tourmaline grain from the Kholomolokhsky Formation; e, f - medium-cracked, non-zonal or with polygonal zonality tourmalines from the Balyktakh Formation (sample VY20/16); g-and - non-cracked rounded and elongate-rounded, spotty-zonal grains from the Balyktakh Formation (sample VY21/16). Mineral inclusions: Qtz - quartz, Rt - rutile, Zrn - zircon, Ap - apatite, Po - pyrrhotite. Black and white circles show the place of analysis on the scanning electron microscope (spot diameter 3 µm). The scale bar is 50 µm.

下载 (633KB)
8. Fig. 7. Triangular diagrams for tourmaline by parent rock type [by Henry, Guidotti, 1985]. (a) - Al-Al50Fe(tot)50-Al50Mg50 diagram: 1 - Li-rich granitoids, pegmatites and aplites, 2 - Li-poor granitoids, pegmatites and aplites, 3 - hydrothermally altered granitic rocks, 4 - metapelites and metapsammites, 5 - Al-poor metapelites and metapsamites, 6 - Fe3+-rich quartz-tourmaline rocks, calcisilicate rocks and metapelites, 7 - low-calcium ultramafics, 8 - metacarbonates and metapyroxenites. (b) - Ca-Fe-Mg diagram: 1 - Li-rich granitoids, pegmatites and aplites, 2 - Li-poor granitoids and associated pegmatites and aplites, 3 - Ca-rich metapelites, metapsammites and calcisilicate rocks, 4 - Ca-poor metapelites, metapsammites and quartz-tourmaline rocks, 5 - metacarbonates; 6 - meta-ultramafics.

下载 (390KB)
9. Fig. 8. Composition of clastic spinel in sample VY10/16 from the Kholomolokh Formation: triangular classification diagram Cr-Al-Fe3+ [Barnes and Roeder, 2001] (a); combined tectonic discrimination diagram #Mg-#Cr (#Mg = Mg / (Mg + Fe2+), #Cr = Cr / (Cr + Al) [Dick and Bullen, 1984; Hirose and Kawamoto, 1995; Pober and Faupl, 1988] (b). N-MORB - normal basalts of mid-ocean ridges.

下载 (459KB)
10. Fig. 9. U-Pb concordance diagrams showing the results of LA-ICP-MS analysis of zircon from rocks of the Kholomolokh (a) and Balyktakh (c, e) formations; histograms of 207Pb/206Pb ages and relative probabilities of zircon ages: Kholomolokh (b) and Balyktakh (d, e) formations. The histograms are constructed for concordant and near-concordant age values (D = -4-4%, see Table 3). On the scale of 207Pb/206Pb ages, grey lines indicate zircon occurrences of presumably metamorphic genesis.

下载 (946KB)
11. Fig. 10. Cathodoluminescence (CL) images of zircon from the Kholomolokhskaya (a-d) and Balyktakhskaya (e-m) formations. Zoning types: a, d, l - oscillatory, b, c, g, k - "spruce tree", h - "flame-shaped", e, i - "football", f, h, m - structureless. Dotted circles show the location of LA-ICP-MS analysis (30 μm spot diameter). The scale bar is 50 µm.

下载 (822KB)
12. Fig. 11. Diagram of Th/U ratio and 207Pb/206Pb ages for the studied zircon grains. Discrimination lines are drawn according to [Rubatto, 2002]. On the scale of 207Pb/206Pb ages, vertical grey fillings indicate zircon occurrences of presumably metamorphic genesis.

下载 (385KB)
13. Fig. 12. Schematic palaeogeographic maps of the Siberian Platform in the Late Cambrian (a) (according to [Sukhov, 2016] with modifications) and Early Ordovician, Late Jurassic (b) (according to [Kanygin et al., 2007] with modifications). 1 - Siberian platform boundary, 2 - major rivers, 3 - Lake Baikal, 4 - settlements; sedimentation settings and facies: 5 - low and high land; 6 - coastal sand facies, 7 - subaerial coastal settings (sebkha), 8 - dolomite stromatolite facies, 9 - shallow-marine, including tidal settings, 10 - western-shelf conditions, clay-carbonate facies, 11 - boundaries of facies zones; 12 - location of the studied area, 13 - assumed direction of terrigenous material drift: pink arrows - Upper Cambrian, Verkholensk time (according to [Gladkochub et al., 2022]), green arrows - Early Ordovician (according to [Glorie et al., 2014]), red arrows - the present work.

下载 (931KB)

版权所有 © Russian academy of sciences, 2025