Trends in the development of medical oxygen production technologies

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

A critical analysis of modern scientific and technological achievements in improving technical means for obtaining medical oxygen based on adsorption and other technologies, as well as determining the dominant trends in their development, was carried out. It has been established that most publications deal with the functioning of oxygen generators (concentrators) under various conditions. The most common solution to increase productivity is to replace the brand of zeolite with a lithium-containing zeolite, grinding it to nanoparticles. The development trends of technical means for obtaining medical oxygen are determined, which consist in the improvement of portable (wearable) generators (concentrators) suitable for military health care and disaster medicine service, and generators (concentrators) for operating units and intensive care units.

全文:

受限制的访问

作者简介

Yu. Miroshnichenko

The S.M.Kirov Military Medical Academy of the Ministry of Defense of the Russian Federation

编辑信件的主要联系方式.
Email: miryv61@gmail.ru

заслуженный работник здравоохранения РФ, профессор, полковник медицинской службы запаса

俄罗斯联邦, Saint Petersburg

А. Schegolev

The S.M.Kirov Military Medical Academy of the Ministry of Defense of the Russian Federation

Email: miryv61@gmail.ru

заслуженный врач РФ, профессор, полковник медицинской службы

俄罗斯联邦, Saint Petersburg

R. Enikeeva

The S.M.Kirov Military Medical Academy of the Ministry of Defense of the Russian Federation

Email: miryv61@gmail.ru

кандидат фармацевтических наук, доцент

俄罗斯联邦, Saint Petersburg

I. Grachev

The S.M.Kirov Military Medical Academy of the Ministry of Defense of the Russian Federation

Email: miryv61@gmail.ru

кандидат медицинских наук, подполковник медицинской службы

俄罗斯联邦, Saint Petersburg

参考

  1. Алехина М.Б., Конькова Т.В. Цеолиты для адсорбционных генераторов кислорода // Вестн. Воронежского гос. ун-та. Серия: Химия. Биология. Фармация. – 2011. – № 2. – C. 67–74.
  2. Еникеева Р.А., Мирошниченко Ю.В., Климкина Е.А. Фармакопейное качество адсорбционного кислорода 93% // Цифровизация в фармации. Процесс трансформации: оценка и перспективы: м-лы Всерос. науч.-практ. конф. с международным участием, Тюмень, 17–18 февраля 2023 г. / ФГБОУ ВО Тюменский ГМУ Минздрава России. – Тюмень: РИЦ «Айвекс», 2023. – С. 71–84.
  3. Мирошниченко Ю.В., Еникеева Р.А., Кассу Е.М. Характеристика способов получения кислорода медицинского и перспективы их применения в военном здравоохранении // Вестн. Рос. воен.-мед. акад. – 2016. – № 2 (54). – C. 157–163.
  4. Мирошниченко Ю.В., Щеголев А.В., Вертий Б.Д. и др. Реализация в военном здравоохранении современных подходов к обеспечению медицинским кислородом // Воен.-мед. журн. – 2022. – Т. 343, № 6. – С. 68–72.
  5. Chao C.C. Patent U.S. 4859217A. Process for separating nitrogen from mixtures thereof with less polar substances. – 1989.
  6. Fischer R., Wanka E.R., Einhaeupl F. et al. Comparison of portable oxygen concentrators in a simulated airplane environment // Resp. Med. – 2013. – Vol. 107, N 1. – P. 147–149.
  7. Hamed D.H. Oxygen and Nitrogen Separation from Air Using Zeolite Type 5A // Al-Qadisiyah J. for eng. sc. – 2015. – Vol. 8, N 2. – P. 57–65.
  8. Hutson N.D.,Yang R.T. Patent U.S. 6780806B1. United States. Lithium-based zeolites containing silver and copper and use thereof for selective absorption. – 2004.
  9. Kianfar E. Zeolites: Properties, Applications, Modification and Selectivity. – Nova Science Publishers Inc. – NY, USA, 2020. – 243 р.
  10. Lee S., Onye A., Latif A. Emergency Anesthesia in Resource-Limited Areas // Advances in Anesthesia. – 2020. – Vol. 38. – P. 209–227.
  11. Litch J.A., Bishop R.A. Oxygen concentrators for the delivery of supplemental oxygen in remote high-altitude areas // Wild. & Envir. Med. – 2000. – Vol. 11, N 3. – P. 189–191.
  12. Ojo A.F., Fitch F.R., Bulow M. Patent U.S. 5616170A. Adsorptive separation of nitrogen from other gases. – 1997.
  13. Pan M., Omar H.M., Rohani S. Application of Nanosize Zeolite Molecular Sieves for Medical Oxygen Concentration // Nanomaterials J. – 2017. – Vol. 7, N 195. – p. 19.
  14. Sami A., Irfan M., Uddin R. et al. Oxygen Concentrator Design: Zeolite Based Pressure Swing Adsorption // Eng. Proc. – 2022. – Vol. 20, N 26. – p. 6.
  15. Thomas C. Blakeman, Dario Rodriquez, Tyler J. Britton et al. Evaluation of Oxygen Concentrators and Chemical Oxygen Generators at Altitude and Temperature Extremes // Military Med. – 2016. – Vol. 181, Iss. suppl. 5. – P. 160–168.
  16. Vande Lune S.A., Lantry J.H., Mason P.E. et al Universal Anesthesia Machine: Clinical Application in an Austere, Resource-Limited Environment // Military Med. – 2020. – Vol. 185, N 5. – P. 550–556.
  17. Virendra K. Y., Nisha C., Gajendra K.I. Recent trends in the nanozeolites-based oxygen concentrators and their application in respiratory disorders // Frontiers in Med. – 2023. – Vol. 10. – p. 13.
  18. World Health Organization: официальный сайт / Technical specifications for pressure swing adsorption (PSA) oxygen plants: interim guidance. – 2020. – URL: https://apps.who.int/iris/handle/10665/332313
  19. World Health Organization, WHO-UNICEF: официальный сайт // Technical specifications and guidance for oxygen therapy devices. – 2019. – URL: https://apps.who.int/iris/handle/10665/329874
  20. Yadav V.K., houdhary N., Inwati G.K. et al. Recent trends in the nanozeolites-based oxygen concentrators and their application in respiratory disorders // Frontiers in Med. – 2023. – Vol. 10. – P. 14–73.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1.

下载 (3KB)
3. Fig. 2.

下载 (4KB)
4. Fig. 3.

下载 (10KB)

版权所有 © Miroshnichenko Y.V., Schegolev А.V., Enikeeva R.А., Grachev I.N., 2024



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: № 01975 от 30.12.1992.
##common.cookie##