Modern non-pharmacological methods of treating atrial fibrillation

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Treatment of atrial fibrillation remains one of the most important and discussed problems of modern cardiology. Since relapses of arrhythmia and adverse reactions often occur when using antiarrhythmic drugs, catheter technologies have been widely used over the past 30 years. The most widespread among them in clinical practice are radiofrequency ablation and cryoballoon ablation. Modern non-fluoroscopic mapping and navigation systems, irrigated catheters with pressure sensors and cryoballoon ablation make it possible to achieve transmural effects on pathological pathways of the left atrium wall while minimizing the risk of complications. The article outlines the rationale, indications and contraindications for catheter ablation, as well as potential complications.

全文:

受限制的访问

作者简介

V. Steklov

The P.V. Mandryka Central Military Clinical Hospital, Ministry of Defense of the Russian Federation

编辑信件的主要联系方式.
Email: cvkg_man@mil.ru

заслуженный врач РФ, доктор медицинских наук, полковник медицинской службы запаса

俄罗斯联邦, Moscow

A. Sergoventsev

Main Military Medical Directorate of the Russian Defense Ministry

Email: cvkg_man@mil.ru

заслуженный врач РФ, кандидат медицинских наук, генерал-майор медицинской службы

俄罗斯联邦, Moscow

M. Patsenko

Main Military Medical Directorate of the Russian Defense Ministry

Email: cvkg_man@mil.ru

заслуженный врач РФ, доктор медицинских наук, доцент, полковник медицинской службы

俄罗斯联邦, Moscow

A. Demyanenko

The P.V. Mandryka Central Military Clinical Hospital, Ministry of Defense of the Russian Federation

Email: cvkg_man@mil.ru

заслуженный врач РФ, кандидат медицинских наук, полковник медицинской службы

俄罗斯联邦, Moscow

参考

  1. Аракелян М.Г., Бокерия Л.А., Васильева Е.Ю. и др. Фибрилляция и трепетание предсердий. Клинические рекомендации 2020 // Рос. кардиол. журн. – 2021. – № 7. – С. 190–260.
  2. Арчаков Е.А., Баталов Р.Е., Хлынин М.С. и др. Электропорация миокарда – альтернатива термическим методам лечения фибрилляции предсердий // Рациональная Фармакотерапия в Кардиологии. – 2023. – Т. 19, № 3. – С. 277–281.
  3. Бокерия Л.А., Шалов Р.З. Использование многополюсных диагностических электродов при катетерном лечении фибрилляции предсердий // Анналы аритмологии. – 2019. – Т. 16, № 2. – С. 71–80.
  4. Воробьева Д.О., Снежицкий В.А. Осложнения процедуры радиочастотной абляции устьев легочных вен при фибрилляции предсердий // Журн. Гродненского гос. мед. университета. – 2017. – № 1. – С. 13–19.
  5. Corley S.D., Epstein A.E., DiMаrco J.P. et al. Relаtionships between sinus rhythm, treаtment, and survivаl in the atriаl fibrillation follow-up investigаtion of rhythm manаgement (AFFIRM) study // Circulation. – 2004. – Vol. 109, N 12. – P. 1509–1513.
  6. Ganesan A.N., Shipp N.J., Brooks A.G. et al. Long-term outcomes of catheter ablation of atrial fibrillation: a systematic review and meta-analysis // J. Am. Heart. Assoc. – 2013. – N 2. – P. e004549.
  7. Garcнa-Bolao I., Ballesteros G., Ramos P. et al. Identification of pulmonary vein reconnection gaps with high-density mapping in redo atrial fibrillation ablation procedures // Europace. – 2018. – Vol. 20, Iss. F1_3. – P. 351–358.
  8. Gupta A., Perera T., Ganesan A. et al. Complications of catheter ablation of atrial fibrillation: asystematic review // Circ. Arrhythm. Electrophysiol. – 2013. – N 6. – P. 1082–1088.
  9. Hаgens V.E., Rаnchor A.V., Van Sonderen E. et аl. Effect of rate or rhythm control on quality of life in persistent аtrial fibrillation: results from the rаte control versus electrical cardioversion (RACE) stud // JACC. – 2004. – Vol. 43. – P. 241–247.
  10. Haines D.E. The biophysics and pathophysiology of lesion formation during radiofrequency catheter ablation. In: Zipes D.P., ed. Cardiac Electrophysiology: From Cell to Bedside. 4th ed. New York: WB Saunders, 2006. – P. 1018–1027.
  11. Haissaguere M., Shah D., Jais P. et al. Electrophysiological Breakthroughs From the Left Atrium to the Pulmonary Veins // Circulation. – 2000. – Vol. 102. – P. 2463–2465.
  12. Hohnloser S.H. Benefit-risk assessment of current аntiarrhythmic drug therаpy of atriаl fibrillation // Clin. Cardiol. – 2012. – Vol. 35, Suppl. 1. – P. 28–32.
  13. Huo Y., Schoenbauer R., Richter S. et al. Atrial Arrhythmias Following Surgical AF Ablation: Electrophysiological Findings, Ablation Strategies, and Clinical Outcome // J. Cardiovasc. Electrophysiol. – 2014. – Vol. 25, N 7. – P. 725–738.
  14. Kaszala K., Ellenbogen K.A. Biophysics of the second-generation cryoballoon: cryobiology of the big freeze // Circ. Arrhythm. Electrophysiol. – 2015. – N 8. – P. 15–17.
  15. Oral H., Knight B.P., Ozaydin M. et al. Segmental ostial ablation to isolate the pulmonary veins during atrial fibrillation: feasibility and mechanistic insights // Circulation. – 2002. – Vol. 106, N 10. – P. 1256–1262.
  16. Packer D.L., Mark D.B., Robb R.A. et al. Catheter Ablation versus Antiarrhythmic Drug Therapy for Atrial Fibrillation (CABANA) Trial: Study Rationale and Design // Am. Heart J. – 2018. – Vol. 199. – P. 192–199.
  17. Panescu D., Whayne J.G., Fleischman S.D. et al. Three-dimensional finite element analysis of current density and temperature distributions during radio-frequency ablation // IEEE Trans. Biomed. Eng. – 1995. – Vol. 42, N 9. – P. 879–890.
  18. Simader F.A., Howard J.P., Ahmad Y. et al. Catheter ablation improves cardiovascular outcomes in patients with atrial fibrillation and heart failure: a meta-analysis of randomized controlled trials // Europace. – 2023. – Vol. 25, N 2. – P. 341–350.
  19. Whittaker D.K. Mechanisms of tissue destruction following cryosurgery // Ann. R. Coll. Surg. Engl. – 1984. – Vol. 66. – P. 313–318.
  20. Zhang R., Wang, Y., Yang M. et al. Risk Stratification for Atrial Fibrillation and Outcomes in Tachycardia-Bradycardia Syndrome: Ablation vs. Pacing // Front. Cardiovasc. Med. – 2021. – Vol. 8. – P. 674471.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Scheme of the RFA procedure. The ablation electrode is placed in the area of ​​the arrhythmia source (circle) under fluoroscopic or intracardiac echocardiographic control. Radiofrequency energy generated by the generator is supplied to the electrode and leads to heating of the tissue around its tip. An indifferent electrode in the form of a plate, placed under the patient's back, serves as a return line for the radiofrequency current (figure from the article by D. Panescu et al. [17], with changes)

下载 (178KB)
3. Fig. 2. Pathogenetic mechanisms of atrial fibrillation. A – localization of arrhythmogenic triggers located inside and outside the pulmonary veins. B – relationship between the anatomy of the atria and arrhythmogenic mechanisms of AF. LAA – left atrial appendage; RAA – right atrial appendage; SVC – superior vena cava; LSPV – left superior pulmonary vein; RSPV – right superior pulmonary vein; LIPV – left inferior pulmonary vein; RIPV – right inferior pulmonary vein; WS – coronary sinus; IVC – inferior vena cava. Figure from the book [10] with changes

下载 (324KB)

版权所有 © Steklov V.I., Sergoventsev A.A., Patsenko M.B., Demyanenko A.V., 2024



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: № 01975 от 30.12.1992.