Physical Modelling of the Formation of the Meteor and Islas Orcadas Rises (South Atlantic)

Cover Page

Cite item

Full Text

Abstract

The kinematic reorganization of the plate boundaries in the southeastern part of the Antarctic part of the South Atlantic, which expressed in the jump of the spreading axis of the Agulhas Ridge, has led to a restructuring of the structural plan of the region. This process resulted in the formation of the southern segment of the Mid-Atlantic Ridge (MAR), the extinction of the previously active Agulhas spreading ridge, and the formation of the Meteor and Islas Orcadas rises, marking the location of the MAR and located symmetrically about its axis. Based on the research results, the conditions for jumping the spreading axis were identified and an experimental model was constructed for the formation of accompanying structures, in which an important role was played by the accretion of the oceanic crust on the Agulhas Ridge and the westward migration of the Falkland Plateau. This resulted in the southward movement of the southern segment of the MAR, the formation of the Malvinas microplate, and a jump in the axis of the Agulhas spreading ridge, which led to the cessation of spreading on this ridge. An important role in the process of this kinematic restructuring was played by the activity of the Sean hotspot.

About the authors

E. P. Dubinin

Lomonosov Moscow State University, the Earth Science Museum

Author for correspondence.
Email: edubinin08@rambler.ru
Russia, Moscow

A. I. Chupakhina

Lomonosov Moscow State University, the Earth Science Museum

Author for correspondence.
Email: chupakhina5anastasiia@gmail.com
Russia, Moscow

A. L. Grokholsky

Lomonosov Moscow State University, the Earth Science Museum

Email: chupakhina5anastasiia@gmail.com
Russia, Moscow

References

  1. Галушкин Ю.И., Дубинин Е.П. Эволюция рельефа дна и термического режима литосферы при перескоке оси спрединга // Тихоокеанская геология. 1991. № 6. С. 123–138.
  2. Грохольский А.Л., Дубинин Е.П. Аналоговое моделирование структурообразующих деформаций литосферы в рифтовых зонах срединно-океанических хребтов // Геотектоника. 2006. Т. 1. С. 76–94.
  3. Дубинин Е.П., Грохольский А.Л., Макушкина А.И. Физическое моделирование условий образования микроконтинентов и краевых плато континентальных окраин // Физика Земли. 2018. № 1. С. 69–82.
  4. Дубинин Е.П., Сущевская Н.М., Грохольский А.Л. История развития спрединговых хребтов Южной Атлантики и пространственно-временнóе положение тройного соединения Буве // Российский журнал наук о Земле. 1999. Т. 1. № 5. С. 423–443.
  5. Пейве А.А., Зителлини Н., Перфильев А.С. и др. Строение Срединно-Атлантического хребта в районе тройного сочленения Буве // Докл. РАН. 1994. Т. 338. № 5. С. 645–648.
  6. Пейве А.А., Перфильев А.С., Пущаровский Ю.М. и др. Строение района южного окончания Срединно-Атлантического хребта (тройное сочленение Буве) // Геотектоника. 1995. № 1. С. 51–68.
  7. Пущаровский Ю.М. Тектоника и геодинамика спрединговых хребтов Южной Атлантики // Геотектоника. 1998. № 4. С. 41–52.
  8. Шеменда А.Н. Критерии подобия при механическом моделировании тектонических процессов // Геология и геофизика. 1983. №10. С. 11.
  9. Hoernle K., Schwindrofska A., Werner R. et al. Tectonic dissection and displacement of parts of Shona hotspot volcano 3500 km along the Agulhas-Falkland Fracture Zone // Geology. 2016. V. 44. № 4. P. 263–266.
  10. La Brecque J.L., Hayes D.E. Seafloor spreading history of the Agulhas Basin // Earth and Planetary Science Letters. 1979. V. 45. № 2. P. 411–428.
  11. Le Roex A., Class C., O’Connor J., Jokat W. Shona and Discovery Aseismic Ridge Systems, South Atlantic: Trace Element Evidence for Enriched Mantle Sources // Journal of Petrology. 2010. V. 51. № 10. P. 2089–2120.
  12. Mammerickx J., Sandwell D. Rifting of old Oceanic Lithosphere // J. Geophys. Res. 1986. V. 91. № B7. P. 1975–1988.
  13. Marks K.M., Stock J.M. Evolution of the Malvinas Plate south of Africa // Marine Geophysical Researches. 2001. V. 22. P. 289–302.
  14. Marks K.M., Tikku A.A. Cretaceous reconstructions of East Antarctica, Africa and Madagascar // Earth and Planetary Science Letters. 2001. V. 186. P. 479–495.
  15. Muelle C.O., Jokat W. The initial Gondwana break-up: A synthesis based on new potential field data of the Africa-Antarctica Corridor // Tectonophysics. 2019. V. 750. P. 301–328.
  16. Parsiegla N., Gohl K., Uenzelmann-Neben G. The Agulhas Plateau: Structure and evolution of a large igneous province // Geophys. J. Int. 2008. V. 174. P. 336–350.
  17. Shemenda A.I., Grocholsky A.L. Physical modeling of slow seafloor spreading // J. Geophys. Res. 1994. V. 99. P. 9137–9153.
  18. Sandwell D.T., Müller R. D., Smith W.H.F. et al. New global marine gravity from CryoSat-2 and Jason-1 reveals buried tectonic structure // Science. 2014. V. 346. № 6205. P. 65–67.
  19. Torsvik T.H., Rousse S., Labail C., Smethurst M.A. A new scheme for the opening of the South Atlantic Ocean and the dissection of an Aptian salt basin // Geophysical Journal International. 2009. 177. № 3. P. 1315–1333.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (1MB)
3.

Download (2MB)
4.

Download (297KB)
5.

Download (1MB)
6.

Download (1MB)
7.

Download (516KB)

Copyright (c) 2023 Е.П. Дубинин, А.И. Чупахина, А.Л. Грохольский