Utilization of Nutrients Entering Through the Bering Strait to the Southwestern Chukchi Sea with the Example of Mineral Phosphorus

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Spatial variations of nutrients along the northwestward stream from Bering Sea to Chukchi Sea are considered for dissolved inorganic phosphorus (DIP) on the data of two surveys conducted in early September of 2010 and 2020. The waters of Bering Sea origin have higher DIP than the waters of Chukchi Sea, but in the upper layer gradually loose phosphorus because of both mixing with local waters and consumption for photosynthesis. In the subsurface layer, the DIP decreasing is prevented by its recycling from destructed organics. The fluxes of phosphorus are estimated separately using the balance model with TS-analysis, previously used in estuarine studies. Successive utilization of DIP along the stream is traced, that forms in the Chukchi Sea two zones of high productivity divided by wide low-productive zone. The nutrients from the upper layer are utilized within the southwestern Chukchi Sea providing primary production 0.1–0.2 gC/m3day, but the main stock of allochtonous nutrients from the subsurface layer is utilized further downstream (at Wrangel Is. or in the northern Chukchi Sea) and provides the production of 0.3–0.4 gC/m3day. Localization of the high-productive zones is determined by density stratification that possibly depends on the stream strength: the stronger advection through Bering Strait – the further from the strait both zones are located. Recent tendency of the stream strengthening tends to remove the zones of utilization the nutrients of Pacific origin out of the southwestern Chukchi Sea.

Full Text

Restricted Access

About the authors

Yu. I. Zuenko

Тихоокеанский филиал (ТИНРО) Всероссийского НИИ рыбного хозяйства и океанографии

Author for correspondence.
Email: zuenko_yury@hotmail.com
ORCID iD: 0000-0003-1312-542X
Russian Federation, Владивосток

References

  1. Важова А.С., Зуенко Ю.И. Оценка первичной продукции эстуариев рек Раздольная и Суходол (зал. Петра Великого. Японское море) // Известия ТИНРО. 2015. Т. 182. С. 132–143.
  2. Звалинский В.И., Недашковский А.П., Сагалаев С.Г. и др. Биогенные элементы и первичная продукция эстуария реки Раздольной // Биология моря. 2005. Т. 31. № 2. С. 107–116.
  3. Кузнецова Н.А., Горбатенко К.М., Фигуркин А.Л. Новые данные по составу, структуре и биомассе зоопланктона в Чукотском море в августе-сентябре 2019 г. // Известия ТИНРО. 2022. Т. 202. № 1. С. 122–145. https://doi.org/10.26428/1606-9919-2022–202-122-145
  4. Мамаев О.И. Термохалинный анализ вод Мирового океана. Л.: Гидрометеоиздат, 1987. 296 с.
  5. Руководство по химическому анализу морских и пресных вод при экологическом мониторинге рыбохозяйственных водоемов и перспективных для промысла районов Мирового океана / Под ред. Сапожникова В.В. М.: ВНИРО, 2003. 202 с.
  6. Супранович Т.И., Юрасов Г.И., Кантаков Г.А. Непериодические течения и водообмен в проливе Лаперуза // Метеорология и гидрология. 2001. № 3. С. 80–84.
  7. Хен Г.В., Басюк Е.О., Кивва К.К. Водные массы и рыбные сообщества в северо-западной части Берингова и западной части Чукотского морей летом 2003–2010 гг. // Труды ВНИРО. 2018. Т. 173. С. 137–156.
  8. Arrigo K.R., van Dijken G., Pabi S. Impact of a shrinking Arctic ice cover on marine primary production // Geophys. Res. Lett. 2008. V. 35. L. 19603. https://doi.org/10.1029/2008GL035028
  9. Arrigo K.R., van Dijken G.L. Continued increases in Arctic Ocean primary production // Progress in Oceanography. 2015. V. 136, № 5. P. 60–70. https://doi.org/10.1016/j.pocean.2015.05.002
  10. Coachman L.K., Aagaard K., Tripp R.B. 1975. Bering Strait. The regional physical oceanography. Seattle and London: University of Washington Press, 1975. 172 p.
  11. Danielson S.L., Ahkinga O., Ashjian C. et al. Manifestation and consequences of warming and altered heat fluxes over the Bering and Chukchi Sea continental shelves // Deep-Sea Research Part II. 2020. V. 177. 104781. https://doi.org/10.1016/j.dsr2.2020.104781
  12. Dean K.G., McRoy C.P., Ahlnäs K., Springer A. The plume of the Yukon River in relation to the oceanography of the Bering Sea // Remote Sensing of Environment. 1989. V. 28. P. 75–84.
  13. Grebmeier J.M., Frey K.E., Cooper L.W., Kędra M. 2018. Trends in benthic macrofaunal populations, seasonal sea ice persistence, and bottom water temperatures in the Bering Strait region // Oceanography. 2018. V. 31. № 2. P. 136–151. https://doi.org/10.5670/oceanog.2018.224
  14. Kawaguchi Y., Nishioka J., Nishino S. et al. Cold water upwelling near the Anadyr Strait: observations and simulations // JGR Oceans. 2020. V. 125. Iss. 9. e2020JC016238. https://doi.org/10.1029/2020JC016238
  15. Lee S.H., Whitledge T.E., Kang S.H. Recent carbon and nitrogen uptake rates of phytoplankton in Bering Strait and the Chukchi Sea // Cont. Shelf Res. 2007. V. 27. P. 2231–2249.
  16. Linders J., Pickart R., Björk G., Moore G. On the nature and origin of water masses in Herald Canyon, Chukchi Sea: Synoptic surveys in summer 2004, 2008, and 2009 // Progr. Oceanogr. 2017. V. 159. P. 99–114. https://doi.org/10.1016/j.pocean.2017.09.005
  17. Pisareva M.N. An overview of the recent research on the Chukchi Sea water masses and their circulation // Russian Journal of Earth Sciences. 2018. V. 18. ES4005. https://doi.org/10.2205/2018ES000631
  18. Pisareva M.N., Pickart R.S., Spall M.A. et al. Flow of pacific water in the western Chukchi Sea: Results from the 2009 RUSALCA expedition // Deep-Sea Research Part I. 2015. V. 105. P. 53–73.
  19. Yang Y., Bai X. Summer changes in water mass characteristics and vertical thermohaline structure in the eastern Chukchi Sea, 1974–2017 // Water. 2020. V. 12. 1434. https://doi.org/10.3390/w12051434
  20. Yun M.S., Whitledge T.E., Stockwell D. et al. Primary production in the Chukchi Sea with potential effects of freshwater content // Biogeosciences. 2016. V. 13. P. 737–749. https://doi.org/10.5194/bg-13-737-2016

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Scheme of water circulation in the eastern sector of the Arctic Ocean. Surface currents are shown by solid arrows, deep currents - by dotted arrows. The frame indicates the study area in the Chukchi Sea.

Download (164KB)
3. Fig. 2. Mean salinity of the subsurface layer of the Bering Sea water flow in the Chukchi Sea based on data from the TINRO survey on September 7-16, 2010 and August 26-September 5, 2020. Survey stations are shown by dots; stations where the subsurface layer was occupied by the Arctic subsurface water mass are indicated by circles. The white line shows a transect running roughly along the stream stem.

Download (225KB)
4. Fig. 3. TS-diagrams of scattering of layer-averaged values of temperature and salinity at oceanological survey stations in the southwestern Chukchi Sea in the summer of 2010 and 2020. Indicators of surface water masses are indicated in yellow and brown colors, and those of subsurface water masses in green and blue colors. In the corners of the scattering area, TS-indices of water masses of autochthonous for the Chukchi Sea (PA - surface arctic, PPA - subsurface arctic) and water masses of Pacific origin (PSA - surface subarctic, PPSA - subsurface subarctic) are labeled. The mixing triangles of PCA with PA and PPSA are indicated in red color, the mixing triangles of PCA with PPA and PPSA are indicated in blue color.

Download (313KB)
5. Fig. 4. Changes in mean mineral phosphorus concentration in the subsurface (solid line) and surface (dashed line) layers of Bering Sea water flow on the transects shown in Fig. 2.

Download (121KB)
6. Fig. 5. Dynamics of mineral phosphorus balance components in the surface (top) and subsurface (bottom) flow layers of Bering Sea waters as they move away from the Bering Strait in the summers of 2010 and 2020.

Download (503KB)
7. Fig. 6. Dynamics of mineral phosphorus concentration in the surface layer of the Bering Sea stream as it moves away from the Bering Strait (estimates are assigned to the midpoints of station intervals).

Download (112KB)
8. Fig. 7. Conditional density profiles at stations located at the Bering Sea water flow stem in the Chukchi Sea at different distances from the Bering Strait, based on data from TINRO surveys in the summer of 2010 (left) and 2020 (right).

Download (265KB)
9. Fig. 8. Thickness of the upper quasi-homogeneous layer (HL) and maximum conditional density gradient at its lower boundary at the stations located at the Bering Sea water flow stem in the Chukchi Sea at different distances from the Bering Strait, based on data from TINRO surveys in summer 2010 and 2020.

Download (202KB)

Copyright (c) 2024 Russian Academy of Sciences