Seasonal Variability of Dissolved Organic Carbon in the North-Eastern Black Sea

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The paper examines and discusses the seasonal and spatial variability of dissolved organic carbon (DOC), apparent oxygen utilization (AOU), chlorophyll-a (Chl “a”), and the proportion of pheophytin in the sum of chlorophyll-a and pheophytin-a (Pheo “a”) along a 5-mile transect opposite Golubaya Bay at stations with depths of 10, 25, 50, 100 and 500 m (Gelendzhik, northeastern Black Sea). Sampling was carried out in 2012 from April to November inclusive with a frequency of 1–2 times per month. Statistical analysis of the weight-average concentrations of DOC and Chl “a” calculated for the entire data set demonstrated a relationship between the seasonal dynamics of DOC and Chl “a”. The Spearman correlation coefficient was R = 0.59 with n = 49. Analysis of the seasonal dynamics of the weight-average concentrations of DOC and Chl “a” at individual stations showed the highest relationship between the parameters at the station with a depth of 50 m (R = 0.85, n = 10), sufficiently remote from both the continental runoff and the influence of the Rim Current. No significant relationship was found between the temporal dynamics of DOC and Pheo “a”. Considering that the concentration of Chl "a" is an indirect characteristic of the abundance of active autotrophic phytoplankton, and Pheo “a” is an indicator of the physiological state of microalgae, it can be assumed that the biomass of autotrophic phytoplankton has a greater impact on the dynamics of DOC than its physiological state (activity).

Full Text

Restricted Access

About the authors

A. V. Kostyleva

Shirshov Institute of Oceanology of the Russian Academy of Sciences

Author for correspondence.
Email: ventis-ire@yandex.ru
Russian Federation, Moscow

S. A. Mosharov

Shirshov Institute of Oceanology of the Russian Academy of Sciences

Email: ventis-ire@yandex.ru
Russian Federation, Moscow

D. I. Migali

Shirshov Institute of Oceanology of the Russian Academy of Sciences

Email: ventis-ire@yandex.ru
Russian Federation, Moscow

References

  1. Ведерников В.И., Демидов А.Б. Вертикальное распределение первичной продукции и хлорофилла в различные сезоны в глубоководных районах Черного моря // Океанология. 1997. Т. 37. № 3. С. 414–423.
  2. Емельянов Е.М. Барьерные зоны в океане. Осадко- и рудообразование, геоэкология. Калининград: Янтарный сказ, 1998. 416 с.
  3. Зацепин А.Г., Пиотух В.Б., Корж А.О. и др. Изменчивость поля течений в прибрежной зоне Черного моря по измерениям донной станции ADCP // Океанология. 2012. Т. 52. № 5. С. 629–642.
  4. Зацепин, А.Г., Островский А.Г., Кременецкий В.В. и др. О природе короткопериодных колебаний основного черноморского пикноклина, субмезомасштабных вихрях и реакции морской среды на катастрофический ливень 2012 г. // Океанология. 2013. Т. 49. № 6. С. 717–732.
  5. Кобак К.И. Биотические компоненты углеродного цикла. Л.: Гидрометеоиздат, 1988. 248 с.
  6. Костылева А.В., Мошаров С.А., Подымов О.И. Исследования сезонной динамики кислорода, кажущегося потребления кислорода и хлорофилла а в северо-восточной части Черного моря в 2012 году // Океанология. 2022. Т. 62. № 5. С. 715–725.
  7. Мошаров С.А., Демидов А.Б., Симакова У.В. Особенности процессов первичного продуцирования в Карском море в конце вегетационного периода // Океанология. 2016. Т. 56. № 1. С. 90–100.
  8. Мошаров С.А., Сергеева В.М. Оценка функционального состояния морского фитопланктона по флуоресцентным показателям и соотношению концентраций феофитина и хлорофилла а // Вопросы современной альгологии. 2018. № 1. С. 10–16.
  9. Мошарова И.В., Сажин А.Ф. Бактериопланктон северо-восточной части Черного моря в летний и осенний периоды 2005 г. // Океанология. 2007. Т. 47. № 5. С. 720–728.
  10. Сиделев С.И., Бабаназарова О.В. Анализ связей пигментных и структурных характеристик фитопланктона высокоэвтрофного озера // Журн. Сиб. фед. Ун-та. Биология. 2008. Т. 1. № 2. С. 162–177.
  11. Симакова У.В. Влияние рельефа дна на сообщества цистозиры Северокавказского побережья Черного моря // Океанология. Т. 49. № 5. 2009. С. 672–680.
  12. Хайлов К.М. Экологический метаболизм в море. Киев: Наукова Думка, 1971. 252 с.
  13. Arar E.J., Collins G.B. U.S. Environmental Protection Agency method 445.0 In Vitro Determination of Chlorophyll a and Pheophytin a in Marine and Freshwater Algae by Fluorescence, revision 1.2 // Cincinnati, Ohio, U.S. Environmental Protection Agency, National Exposure Research Laboratory, Office of Research and Development. 1997. P. 1–22.
  14. Azetsu-Scott K., Passow U. Ascending marine particles significance of transparent exopolymer particles (TEP) in the upper ocean // Limnology and Oceanography. 2004. V. 49. P. 741–748.
  15. Cadee G.C. Particulate and dissolved organic carbon and chlorophyll a in the Zaire River, estuary and plume // Neth.s J. of Sea Research. 1984. V. 17. P. 426–440.
  16. Carlson С.A., Ducklow H.W. Dissolved organic carbon in the upper ocean of the central equatorial Pacific Ocean, 1992: Daily and finescale vertical variations // Deep-Sea Research II. 1995. V. 42. № 23. P. 639–656.
  17. Cauwet G., Hansell D.A., Carlson C.A. et al. DOM in the coastal zone // Biogeochemistry of Marine Dissolved Organic Matter. San Diego: Academic Press. 2002. P. 579–609.
  18. Chaddock R.E. Principles and Methods of Statistics, 1st ed. Boston: Houghton Mifflin Company, 1925.
  19. Chen W., Wangersky P.J. High-temperature combustion analysis of dissolved organic carbon produced in phytoplankton cultures // Marine Chemistry. 1993. V. 41. P. 167–171.
  20. Chen W., Wangersky P.J. Production of dissolved organic carbon in phytoplankton cultures as measured by high-temperature catalytic oxidation and ultraviolet photo-oxidation methods // J. of Plankton Research. 1996. V. 18. № 7. P. 1201–1211.
  21. Dagg M.J., Bianchi T., McKee B. et al. Fates of dissolved and particulate materials from the Mississippi river immediately after discharge into the northern Gulf of Mexico, USA, during a period of low wind stress // Continental Shelf Research. 2008. V. 28. P. 1443–1450.
  22. Doval M.D., Perez F.F., Berdalet E. Dissolved and particulate organic carbon and nitrogen in the Northwestern Mediterranean // Deep-Sea Research I. 1999. V. 46. P. 511–527.
  23. Ducklow H.W., Hansell D.A., Morgan J.A. Dissolved organic carbon and nitrogen in the Western Black Sea // Marine Chemistry. 2007. V. 105. P. 140–150.
  24. Engel A. Distribution of transparent exopolymer particles (TEP) in the northeast Atlantic Ocean and their potential significance for aggregation processes // Deep Sea Research I. 2004. V. 51. P. 83–92.
  25. Engel A., Schartau M. Influence of transparent exopolymer particles (TEP) on sinking velocity of Nitzschia closterium aggregates // Marine Ecology Progress Series. 1999. V. 182. P. 69–76.
  26. Fogg G.E., Boalch G.T. Extracellular products in pure cultures of a brown alga // Nature. 1958. V. 181. № . 4611. P. 789–790.
  27. Grasshoff K., Kremling K., Ehrhardt M. Methods of seawater analysis, 3rd ed. New York: Wiley-VCH, 1999.
  28. Happ G., Gosselink J.G., Day J.W. Jr. The Seasonal Distribution of Organic Carbon in a Louisiana Estuary // Estuarine and Coastal Marine Science. 1977. V. 5. P. 695–705.
  29. Holm-Hansen O., Riemann B. Chlorophyll-a determination: Improvements in methodology // Oikos. 1978. V. 30. P. 438–447.
  30. Jones R.F. Extracellular Mucilage of the Red Alga Porphyridium cruentum // J. of Cell. and Comp. Physiol. 1962. V. 60. P. 61–64.
  31. Legendre L., Michaud J. Chlorophyll a to estimate the particulate organic carbon available as food to large zooplankton in the euphotic zone of oceans // J. of Plankton Research. 1999. V. 21. № 11. P. 2067–2083.
  32. Myklestad S.M., Holm-Hansen O., Varum K.M. et al. Rate of release of extracellular amino acids and carbohydrates from the marine diatom Chaetoceros affinis // J. of Plankton Research. 1989. V. 11. P. 763–773.
  33. Passow U. Formation of transparent exopolymer particles, TEP, from dissolved precursor material // Marine Ecology Progress Series. 2000. V. 192. P. 1–11.
  34. Passow U. Transparent exopolymer particles (TEP) in aquatic environments // Progress in Oceanography. 2002. V. 55. P. 287–333.
  35. Redfield A.C., Ketchum B.H., Richards F.A. The influence of organisms on the com-position of seawater. New York: Intersc., 1963. V. 2. P. 26–77.
  36. Saliot A., Derieux S., Sadouni N. et al. Winter and Spring Characterization of Particulate and Dissolved Organic Matter in the Danube–Black Sea Mixing Zone // Estuarine, Coastal and Shelf Science. 2002. № 54. P. 355–367.
  37. Sorokin Y.I. The Black Sea: Ecology and Oceanography. Leiden: Backhuys Publishers, 2002.
  38. Sugimura Y., Suzuki Y. A high temperature catalytic oxidation method for non-volatile dissolved organic carbon in seawater by direct injection of a liquid sample // Marine Chemistry. 1988. V. 24. P. 105–131.
  39. Thornton D.C.O. Diatom aggregation in the sea: mechanisms and ecological implications // European J. of Phycology. 2002. V. 37. P. 149–161.
  40. Whitton B.A. Extracellular Products of Blue-Green Algae // J. gen. Microbiol. 1963. V. 40. P. 1–11.
  41. White W.M. Geochemistry. Chichester: Wiley-Blackwell, 2013.
  42. Wurl O., Holmes M. The gelatinous nature of the sea-surface microlayer // Marine Chemistry. 2008. Vol. 110. P. 89–97.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Sampling stations on the shelf and continental slope in the area of Goluboy Bay, Gelendzhik, 2012.

Download (223KB)
3. Fig. 2. Seasonal variability of: a - sea water temperature (T); b - ROU; c - chl ‘a’; d - AOU; e - pheo ‘a’ on station 3.

Download (1MB)
4. Fig. 3. Seasonal dynamics: a - ROU; b - chl ‘a; c - pheo ’a; d - AOU (st. 1, surface).

Download (373KB)
5. Fig. 4. Vertical distribution of ROS and chl ‘a’ in v. 3.

Download (616KB)
6. Fig. 5. Seasonal dynamics of weighted average concentrations of ROS and Chl-a in the upper 50-metre layer by stations: a - St. 1; b - St. 2; c - St. 3; d - St. 4; e - St. 5.

Download (629KB)

Copyright (c) 2025 Russian academy of sciences