Structural Paragenesis of a Shear Zone Within the Intraplate Deformation of the Central Indian Ocean Basin

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

The mosaic-block structure of the intraplate deformation area in the Central Basin of the Indian Ocean is confirmed by multibeam bathymetry data collected in cruise 42 of RV Academic Boris Petrov and cruise SO258 of RV Sonne. It consists of a set of isometric deformed tectonic blocks. The linear blockat 0.2–0.6°S, which looks in plan like a stairs or branch, is sharply distinguished by its morphology. This block is a system of multi-scale structural elements (folds, flexures, breaks) that constitute a structural paragenesis formed in the mechanical environment of a right-sided simple shift, and can be interpreted within the framework of the Riedel model.

Texto integral

Acesso é fechado

Sobre autores

O. Levchenko

Shirshov Institute of Oceanology of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: olevses@mail.ru
Rússia, Moscow

A. Tevelev

Lomonosov Moscow State University

Email: olevses@mail.ru
Rússia, Moscow

Yu. Marinova

Shirshov Institute of Oceanology of the Russian Academy of Sciences

Email: olevses@mail.ru
Rússia, Moscow

I. Veklich

Shirshov Institute of Oceanology of the Russian Academy of Sciences

Email: olevses@mail.ru
Rússia, Moscow

Bibliografia

  1. Вержбицкий В.Е., Левченко О.В. Детальная структура области внутриплитных деформаций в Центральной котловине Индийского океана (результаты исследований на трех полигонах) // Геотектоника. 2002. № 6. С. 77–94.
  2. Евсюков Ю.Д. Новые данные о строении возвышенностей в экваториальной части Центральной котловины Индийского океана // Докл. АН СССР. 1991. Т. 320. № 3. С. 677–681.
  3. Дубинин Е.П., Ушаков С.А. Океанический рифтогенез. М.: ГЕОС, 2001. 293 с.
  4. Зоненшайн Л.П., Непрочнов Ю.П. Геолого-геофизическая характеристика основных тектонических структур океана // Геофизика морского дна. Т. 1. М.: Наука, 1979. С. 409–434.
  5. Казьмин В.Г., Левченко О.В. Современные деформации индоокеанской литосферы // Современная тектоническая активность Земли и сейсмичность. М.: Наука, 1987. С. 159–175.
  6. Кирмасов А.Б. Основы структурного анализа. М.: Научный мир, 2011. 368 с.
  7. Левченко О.В. Геологическое строение области внутриплитных деформаций в Центральной котловине Индийского океана. Автореф. дис. ... канд.геол.-мин. наук. М.: ИОАН, 1986. 23 с.
  8. Левченко О.В., Веклич И.А. Мозаика деформированных тектонических блоков в Центральной котловине Индийского океана // Докл. РАН. Науки о Земле. 2022. Т. 505. № 1. С. 69–75.
  9. Левченко О.В., Мерклин Л.Р., Непрочнов Ю.П. Складчатые структуры в Центральной котловине Индийского океана // Геотектоника. 1985. № 1. С. 15–23.
  10. Левченко О.В., Милановский В.Е. Внутриплитные деформации в центре Индийского океана по данным детального тектонического картирования // Докл. РАН. 1999. Т. 365. № 6. С. 792–797.
  11. Левченко О.В., Шаповалов С.М. Возвращение российских океанологов в Индийский океан: мультидисциплинарные исследования в 42-м рейсе научно-исследовательского судна “Академик Борис Петров” // Океанология. 2019. Т. 59. № 1. С. 181–183.
  12. Левченко О.В., Гейсслер В. Геофизические исследования в восточной части Индийского океана в рейсе SO258/2 научно-исследовательского судна “Зонне” (Германия) // Океанология. 2019. Т. 59. № 3. С. 513–516.
  13. Тевелев А.В. Структурная геология: учебник. 4-е изд., перераб. и доп. М.: ИНФРА-М, 2016. 339 с.
  14. Хаин В.Е. Тектоника континентов и океанов. М.: Научный мир, 2001. 606 с.
  15. Шеменда А.И. Моделирование внутриплитовых деформаций в северо-восточной части Индийского океана // Геотектоника. 1989. № 3. С. 37–49.
  16. Beekman F., Bull J.M., Cloetingh S., Scrutton R.A. Crustal fault reactivation facilitating lithospheric folding in the Central Indian Ocean // Geol. Soc. Spec. Pub. 1996. V. 99. P. 251–263.
  17. Bergman E.A., Solomon S.C. Earthquake source mechanisms from body-waveform inversionand intraplate tectonics in the northern Indian Ocean // Phys. Earth Planet. Inter. 1985. № 40. P. 1–23.
  18. Bull J.M., Scrutton R.A. Fault reactivation in the central Indian Ocean and the rheology of oceanic lithosphere // Nature. 1990. V. 344. P. 855–858.
  19. Bull J.M., Scrutton R.A. Seismic reflection images of intraplate deformation, central Indian Ocean, and their tectonic significance // J. of the Geological Society.1992. V. 149. P. 955–966. https://doi.org/10.1144/gsjgs.149.6.0955.
  20. Chamot-Rooke N., Jestin F., de Voogd B., Phedre working group. Intraplate shortening in the Central Indian Ocean determined from a 2100-km-long north-south deep seismic reflection profile // Geology. 1993. V. 21. P. 1043–1046.
  21. Cochran J.R. Himalayan uplift, sea level and the record of the Bengal Fan sedimentation at the ODP Leg 116 Sites // Proc. ODP Sci. Results / Eds. J.R. Cochran, D.A.V. Stow et al. College Station, Texas, 1990. V. 116. P. 397–414.
  22. Cochran J.R., Stow D.A.V. et al. Proc. ODP, Init.Repts. College Station, TX (Ocean Drilling Program). 1988. V. 116.
  23. Desa M.A., Ramana M.V., Ramprasad T. Seafloor spreading magnetic anomalies south off Sri Lanka // Marine Geology. 2006. V. 229. P. 227–240. https://doi.org/10.1016/j.margeo.2006.03.006.
  24. Desa M.A., Ramana M.V. Middle Cretaceous geomagnetic field anomalies in the Eastern Indian Ocean and their implication to the tectonic evolution of the Bay of Bengal // Marine Geology. 2016. V. 382. № 1. P. 111–121. https://doi.org/10.1016/j.margeo.2016.10.002.
  25. Desa M.A., Ramana M.V. Integrated analysis of magnetic, gravity and multichannel seismic reflection data along a transect southeast of Sri Lanka, Bay of Bengal: New constraints // Marine Geology. 2021. V. 438. 106543. https://doi.org/10.1016/j.margeo.2021.106543.
  26. Geller C.A., Weissel J.K., Anderson R.N. Heat transfer and intraplate deformation in the central Indian Ocean // J. Geophys. Res. 1983. V. 88. P. 5560–5570.
  27. Intraplate deformation in the Central Indian Ocean Basin / Eds. Neprochnov Yu.P., Gopala Rao D., Murthy K.S.R., Subrahmanyam C. Geological Society of India Memoir. Bangalore, 1998. V. 39. 250 p.
  28. Krishna K.S., Bul, J.M. Scrutton R.A. Evidence for multiphase folding of the central Indian Ocean lithosphere // Geology. 2001. V. 29. P. 715–718.
  29. McAdoo D. C., Sandwell D.T. Folding of the oceanic lithosphere // J. Geophys. Res. 1985. V. 90. P. 8563–8569.
  30. Murthy K.S.R., Neprochnov Yu.P., Levchenko O.V et al. Some new observations on the intra-plate deformation in the Central Indian Basin (CIB) // Marine Geology. 1993. V. 114. P. 185–193.
  31. Neprochnov Y.P., Levchenko O.V., Merklin L.R., Sedov V.V. The structure and tectonics of the intraplate deformation area in the Indian Ocean // 1988. Tectonophysics. V. 156. P. 89–106.
  32. Stein C.A., Cloetingh S., Wortel R. SEASAT-derived gravity constraints on stress and deformation in the northeastern Indian Ocean // Geophys. Res. Lett. 1989. V. 16. P. 823–826.
  33. U.S. Geological Survey, 2020, Earthquake Lists, Maps, and Statistics, accessed December 18, 2023 at. https://www.usgs.gov/natural-hazards/earthquake-hazards/lists-maps-and-statistics
  34. Weissel J.K., Anderson R.N., Geller C.A. Deformation of the Indo-Australian plate // Nature. 1980. V. 287. P. 284–291.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Relief map of the bottom of the Central Basin of the Indian Ocean with earthquake source mechanisms (black and white - thrust, red and white - shear, orange - mechanism not determined) from [33]. In the inset is the Vetka test site. Black solid lines - seismic profiles of the SO258/2 cruise of the R/V Sonne, black dashed line - NSP 22 profile of the R/V Professor Shtokman.

Baixar (1MB)
3. Fig. 2. NSP profile (initial and interpreted) of the 22nd cruise of the R/V Professor Shtokman, position shown in Fig. 1 (inset): 1 - Late Cretaceous-Early Pliocene complex; 2 - discontinuities (a - major, b - minor); 3 - unconformity surface (A - Late Miocene, corresponding to the main phase of intraplate deformation, ~ 8 Ma, AA - Early Pliocene).

Baixar (541KB)
4. Fig. 3. Vetka atypical linear deformed tectonic block: a - 3D image; b - seismic sections crossing the deformation zone.

Baixar (359KB)
5. Fig. 4. General scheme of the structure of the Vetka block: 1 - general Riedel shears (Y); 2 - detachments (T); 3 - secondary (synthetic) Riedel chipping (P); 4 - conjugate (antithetic) Riedel chipping (R'); 5 - outbursts (rf); 6 - anticlinal axes (a); 7 - tangential stresses (τ); 8 - compressive normal stresses (σ1).

Baixar (865KB)
6. Fig. 5. 3D structural model of the ‘Branch’ block with a cross-section along profile 4. The approximate position of the general shear zone is marked with a plane. The notation see in Fig. 4, profile position see Figs. 1 and 3.

Baixar (329KB)
7. Fig. 6. Schematic of the structure of the central part of the general shear zone. Grabenes (pull-aparts) bounded by faults are labelled G. For other symbols, see Fig. 4.

Baixar (265KB)

Declaração de direitos autorais © Russian academy of sciences, 2025