Investigation of Underwater Radioactive Objects in Stepovoye Bay (Novaya Zemlya)

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

In 1965, the K-27 submarine with an emergency portside reactor with unloaded spent nuclear fuel (SNF) was flooded in Stepovoye Bay (Novaya Zemlya). The source of radioactivity is nuclear fuel in the port side reactor and fuel carried into the corresponding steam generator. Before flooding, the elements of the power plant were sealed with furfural, and the entire compartment was then filled with bitumen. It is believed that when water entering the reactor core, a self-sustaining fission chain reaction (SCR) may occur. However, this process is possible only if the above-mentioned protective barriers are violated. The state of the protective barriers can be judged by the magnitude and variations of the radioactive background on the deck and near the submarine on the ground. Thus, the most important task of monitoring and preventing an emergency situation on the K-27 submarine is the constant monitoring of the environment (ecology) in Stepovoy Bay in general and near the submerged submarine in particular. The article considers the results of research on the submarine and its environment, including the R/V Akademik Mstislav Keldysh (cruise 92, 2023) expedition, when the parameters of the radioactive background were for the first time measured directly on the submarine robust hull in the area of the reactor compartment.

Texto integral

Acesso é fechado

Sobre autores

N. Rimsky-Korsakov

Shirshov Institute of Oceanology, Russian Academy of Sciences

Autor responsável pela correspondência
Email: nrk@ocean.ru
Rússia, Moscow

N. Knievel

National Research Center “Kurchatov Institute”

Email: Knivel_NY@nrcki.ru
Rússia, Moscow

M. Flint

Shirshov Institute of Oceanology, Russian Academy of Sciences

Email: nrk@ocean.ru
Rússia, Moscow

A. Kazenov

National Research Center “Kurchatov Institute”

Email: nrk@ocean.ru
Rússia, Moscow

O. Kiknadze

National Research Center “Kurchatov Institute”

Email: nrk@ocean.ru
Rússia, Moscow

I. Anisimov

Shirshov Institute of Oceanology, Russian Academy of Sciences

Email: nrk@ocean.ru
Rússia, Moscow

A. Pronin

Shirshov Institute of Oceanology, Russian Academy of Sciences

Email: nrk@ocean.ru
Rússia, Moscow

A. Lesin

Shirshov Institute of Oceanology, Russian Academy of Sciences

Email: nrk@ocean.ru
Rússia, Moscow

V. Muraviya

Shirshov Institute of Oceanology, Russian Academy of Sciences

Email: nrk@ocean.ru
Rússia, Moscow

Bibliografia

  1. Алиев Р.А. Осадконакопление в заливах Карского моря // Подводные технологии и мир океана. 2006. № 4. С. 12–19.
  2. Антонов А.М. Атомная подводная лодка пр. 645 // Подводные лодки: история развития. Сборник статей. Екатеринбург, 2003. [Электронный ресурс.] Режим доступа: http://book.uraic.ru/elib/pl/lodki/645.htm, дата последнего обращения 3.07 2024 г.
  3. Апальков Ю.В. Подводные лодки советского флота 1945–1991 гг. Том I: Первое поколение АПЛ. М: Моркнига, 2009. 194 с.
  4. Боровик А.И. Технология использования АНПА для исследования подводных потенциально опасных объектов в Карском море // Подводные исследования и робототехника. 2022. № 1 (39). С. 32–39.
  5. Вялышев А.И., Добров В.М., Долгов А.А. и др. Экологический мониторинг окраинных морей России. М.: ФГБНУ “Аналитический центр” Минобрнауки России, 2019. 240 с.
  6. Елкин А.В., Комаров В.С., Розман Б.Я. Телеуправляемые подводные аппараты-роботы “ГНОМ” // Освоение морских глубин. М.: Оружие и технологии, 2018. С. 332–336.
  7. Казеннов А.Ю., Нерсесов Б.А., Римскй-Корсаков Н.А. Исследование подводных потенциально опасных объектов в Карском море. М.: ФГБНУ “Аналитический центр” Минобрнауки России, 2017. 274 с.
  8. Машкович В.П., Панченко А.М. Основы радиационной безопасности: учебное пособие для вузов. М.: Энергоатомиздат. 1990. 176 с.
  9. Поярков С.Г., Римский-Корсаков Н.А., Флинт М.В. Технические аспекты исследований окружающей среды западной части Карского моря // Океанологические исследования. 2017. Т. 45. № 1. С. 171–186.
  10. Реестр подводных потенциально опасных объектов во внутренних водах и территориальном море Российской Федерации // Министерство Российской Федерации по делам гражданской обороны, чрезвычайным ситуациям и ликвидации последствий стихийных бедствий, ФГБОУ ВО Санкт-Петербургский университет ГПС МЧС России, 2019, 115 с.
  11. Римский-Корсаков Н.А., Казеннов А.Ю., Розман Б.Я. Технология мониторинга экологии заливов восточного побережья Новой Земли // Материалы научной конференции “Экосистема Карского моря – новые данные экспедиционных исследований”, М: АПР, 2015. С. 258–266.
  12. Римский-Корсаков Н. А., Книвель Н.Я., Казеннов А.Ю. и др. Радиационно опасные объекты в Российской Арктике (85-й рейс научно-исследователь-ского судна “Академик Мстислав Келдыш” в Карское море) // Океанология. 2022., Т. 62. № 3. С. 495–498.
  13. Саркисов А.А., Сивинцев Ю.В., Высоцкий В.Л., Никитин В.С. Атомное наследие холодной войны на дне Арктики; радиоэкологические и технико-экономические проблемы радиационной реабилитации морей. М.: Ин-т проблем безопасного развития атомной энергетики РАН, 2015. 699 с.
  14. Римский-Корсаков Н.А., Тронза С.Н., Анисимов И.М. Развитие гидролокационных технологий глубоководных исследований рельефа дна и подводных объектов // Международный журнал прикладных и фундаментальных исследований. 2019. № 9. С. 85–90.
  15. Сивинцев Ю.В., Вакуловский С.М., Васильев А.П. и др. Техногенные радионуклиды в морях, омывающих Россию («Белая книга – 2000”). М.: ИздАТ, 2005. 624 с.
  16. Флинт М.В., Римский-Корсаков Н.А., Поярков С.Г. Экосистемы российской Арктики –2015 (63-й рейс научно-исследовательского судна “Академик Мстислав Келдыш”) // Океанолгия. 2016. Т. 56. № 3. С. 499–501.
  17. Gwynn J.P., Nikitin A., Shershakov V. et al. Main results of the 2012 joint Norwegian-Russian expedition to the dumping sites of the nuclear submarine K-27 and solid radioactive waste in Stepovogo Fjord, Novaya Zemlya // J. Environ. Radioact. 2016 V. 151. Pt. 2. P. 417–426.
  18. Joint Russian-Norwegian Expert Group for Investigation of Radioactive Contamination in the Northern Areas. Dumping of Radioactive Waste and Radioactive Contamination in the Kara Sea // Results from 3 years of investigations (1992–1994) performed by the Joint Russian-Norwegian Expert Group for Investigation of Radioactive Contamination in the Northern Areas. Norwegian Radiation Protection Authority, Østeraås, Norway. 1996 (First Edition). ISBN 82-993079-5-3.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Scheme of flooding of radioactive waste in Stepovoye Bay (Novaya Zemlya). The diagram shows the burial sites: 17-23 – landfills of containers with solid radioactive waste; 24 – nuclear submarines K-27.

Baixar (120KB)
3. Fig. 2. Sonar images obtained using the high-frequency HBO ANPA “Pilgrim” in 2013 during the expedition to the NIS “Professor Shtokman" (flight 126): a – when passing along a route perpendicular to the axis of the submarine at a distance of 18 meters from the bottom; b – when passing along a route parallel to the axis of the submarine at a distance of 18 m from the bottom.

Baixar (128KB)
4. Fig. 3. Detailed bathymetric image of object 24 (K-27 submarine) in Stepovoy Bay, obtained by specialists of the Central Research Institute of the Russian Geographical Society using the SEABAT T50R multipath echo sounder from RESON (Denmark) in September 2021 during the expedition to the NIS Akademik Mstislav Keldysh (flight 85). The figure shows: a grid of geographical coordinates in increments of 1 in latitude and longitude; the depth of the place is about 32 meters, the depth in the upper part of the cabin is 21 m, the depth in the deck area is 24 m. The orientation of the hull (stern-nose) is NW-SE.

Baixar (276KB)
5. Fig. 4. Still images of video footage taken with the help of TNPA GNOMSuper during the inspection of the K-27 submarine in 2019 during the expedition to the NIS Akademik Mstislav Keldysh (flight 76): a – the deck of the boat in the area of the reactor compartment (on the right, the escape hatch of the reactor compartment); b – the deck in the central part of the submarine (on the left, the remains of the guard rail).

Baixar (177KB)
6. Fig. 5. TNPA "GNOMSuper" with a gamma-ray spectrometer REM-35-2: 1 – additional buoyancy units; 2 – upper right lamp; 3 – front main video camera; 4 – cable cable; 5 - gamma spectrometer; 6 – main engine block on the port side.

Baixar (143KB)
7. Fig. 6. The spectra recorded on the deck of the K-27 submarine in volumes 12 (left) and 15 (right). The numbering of the points and their location correspond to the scheme shown in Figure 8.

Baixar (196KB)
8. Fig. 7. TNPA "Falcon": the dotted line is circled by the gamma-ray spectrometer REM-4-50.

Baixar (201KB)
9. Fig. 8. Cartogram of the spatial distribution of the dose rate in the upper part of the outer hull of the submarine and the location of the points where measurements were carried out using the REM-4-50 gamma-ray spectrometer installed on the Falcon TNPA.

Baixar (180KB)
10. Fig. 9. Freeze frame of the video footage of the emergency hatch of the K-27 nuclear submarine, conducted with the help of the Falcon rocket launcher in 2023 during the expedition to NIS AMK (flight 92): a – the hatch of the submarine: 1 – the hinges of the cut–off hatch cover, 2 – the process plate welded to the hatch coaming, 3 – the space between the NC and the PC, 4 – the deck of the submarine, 5 – the edge of the cutout in the NC; b - the installation of a gamma spectrometer: 1 – the process plate welded to the hatch coaming PC; 2 – underwater gamma-ray spectrometer REM-4-50; 3 – technological rod for suspension of the gamma-ray spectrometer; 4 – "brush" manipulator TNPA "Falcon"; 5 – space between NK and PC.

Baixar (244KB)
11. Fig. 10. The total spectrum recorded on the robust hull of the K-27 nuclear submarine in the hatch of the reactor compartment (exposure 21 h 10 min).

Baixar (133KB)
12. Fig. 11. Sampling and measurement of radioactivity of bottom soil samples: a) tubular gravity sampler "Neimisto tube"; b) core section during layer-by-layer separation; c) spectrometric complex SKS-07P-G5 "Condor" based on a semiconductor detector (right).

Baixar (299KB)
13. Fig. 12. Average profiles of the specific activity of 137Cs in the soil depending on the depth of the bottom soil core for the inner (red line) and outer (blue line) parts of Stepovoye Bay.

Baixar (122KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024