Approbation of a climate monitoring system based on moored platforms, observatories and shipboard studies in the 96th cruise of the research vessel “Akademik Mstislav Keldysh”

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

In the tenth multidisciplinary expedition under the geosystems research program of the Shirshov Institute of Oceanology of the Russian Academy of Sciences “European Arctic: Geological Record of Environmental and Climate Change” to the Barents and Kara seas in July–August 2024, new data on atlantification and methane emission were obtained on the Eurasian Western Arctic Shelf. The research is aimed at developing a National system for monitoring climate change and climate-active substances based on the use of moored autonomous platforms, observatories, and vessel based observations.

Full Text

Restricted Access

About the authors

M. D. Kravchishina

Shirshov Institute of Oceanology, Russian Academy of Sciences

Author for correspondence.
Email: kravchishina@ocean.ru
Russian Federation, Moscow

A. A. Klyuvitkin

Shirshov Institute of Oceanology, Russian Academy of Sciences

Email: kravchishina@ocean.ru
Russian Federation, Moscow

A. N. Novigatsky

Shirshov Institute of Oceanology, Russian Academy of Sciences

Email: kravchishina@ocean.ru
Russian Federation, Moscow

А. V. Gavrikov

Shirshov Institute of Oceanology, Russian Academy of Sciences

Email: kravchishina@ocean.ru
Russian Federation, Moscow

D. A. Pestunov

V. E. Zuev Institute of Atmospheric Optics, Russian Academy of Science, Siberian Branch

Email: kravchishina@ocean.ru
Russian Federation, Tomsk

Yu. A. Shtabkin

A. M. Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences

Email: kravchishina@ocean.ru
Russian Federation, Moscow

V. V. Ivanov

Lomonosov Moscow State University

Email: kravchishina@ocean.ru
Russian Federation, Moscow

A. S. Schuka

Shirshov Institute of Oceanology, Russian Academy of Sciences

Email: kravchishina@ocean.ru
Russian Federation, Moscow

A. K. Ambrosimov

Shirshov Institute of Oceanology, Russian Academy of Sciences

Email: kravchishina@ocean.ru
Russian Federation, Moscow

N. V. Politova

Shirshov Institute of Oceanology, Russian Academy of Sciences

Email: kravchishina@ocean.ru
Russian Federation, Moscow

I. M. Anisimov

Shirshov Institute of Oceanology, Russian Academy of Sciences

Email: kravchishina@ocean.ru
Russian Federation, Moscow

B. V. Baranov

Shirshov Institute of Oceanology, Russian Academy of Sciences

Email: kravchishina@ocean.ru
Russian Federation, Moscow

E. A. Novichkova

Shirshov Institute of Oceanology, Russian Academy of Sciences

Email: kravchishina@ocean.ru
Russian Federation, Moscow

N. V. Kozina

Shirshov Institute of Oceanology, Russian Academy of Sciences

Email: kravchishina@ocean.ru
Russian Federation, Moscow

A. G. Matul

Shirshov Institute of Oceanology, Russian Academy of Sciences

Email: kravchishina@ocean.ru
Russian Federation, Moscow

S. K. Gulev

Shirshov Institute of Oceanology, Russian Academy of Sciences

Email: kravchishina@ocean.ru
Russian Federation, Moscow

References

  1. Гулев С.К. Глобальные изменения климата и Мировой океан // Проблемы прогнозирования. 2023. № 6. С. 25–36.
  2. Мельников В.П., Спесивцев В.И., Куликов В.Н. О струйной дегазации углеводородов как источнике новообразований льда на шельфе Печорского моря // Итоги фундаментальных исследований криосферы Земли / Е.С. Мельников (отв. ред.). Новосибирск: Наука. Сибирское Предприятие РАН, 1997. С. 259–269.
  3. Решетников М.Г. Климатическая политика в России: Наука, технологии, экономика // Проблемы прогнозирования. 2023. № 6. С. 6–10.
  4. Римский-Корсаков Н.А., Флинт М.В., Поярков С.Г. и др. Развитие технологии комплексных инструментальных подводных наблюдений применительно к экосистемам Российской Арктики // Океанология. 2019. Т. 59. № 4. С. 679–683.
  5. Gulev S., Latif M. The origins of a climate oscillation // Nature. 2015. V. 521. P. 428–430.
  6. Ivanov V.V., Tuzov F.K. Formation of dense water dome over the Central Bank under conditions of reduced ice cover in the Barents Sea // Deep Sea Research Part I: Oceanographic Research Papers. 2021. 103590. https://doi.org/10.1016/j.dsr.2021.103590
  7. Koppers A.A.P., Coggon R. eds. Exploring Earth by Scientific Ocean Drilling: 2050 Science Framework. 2020. 124 p. https://doi.org/10.6075/J0W66J9H
  8. Lind S., Ingvaldsen R.B., Furevik T. Arctic warming hotspot in the northern Barents Sea linked to declining sea-ice import // Nature Climate Change. 2018. V. 8. № 7. P. 634–639.
  9. Semenov P., Portnov A., Krylov A. et al. Geochemical evidence for seabed fluid flow linked to the subsea permafrost outer border in the South Kara Sea // Geochemistry. Chemie Der Erde. 2020. V. 80. № 3. doi: 10.1016/j.chemer.2019.04.005.
  10. Sharmar V.D., Tereschenkov V.P., Gavrikov A.V. et al. Moored meteorological buoy as part of national green-house monitoring system in the Barents Sea // Oceanology. 2025. V. 65. № 1. P. 161–166.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Map of the expedition route and oceanographic stations in July–August 2024: 1 – integrated stations, 2 – SAWS, 3 – AGOS, 4 – vessel route, 5 – current vectors (vector length reflects current speed), 6 – ice cover on August 5, 7 – ice cover on August 15, 8 – boundaries of the Russian and Norwegian economic zones and the fishery protection zone around Spitsbergen. Current vectors are constructed according to [6] based on reanalysis, http://bulletin.mercator-ocean.fr/en/PSY4#3/75.50/-51.33. Ice cover is shown according to data from the Norwegian Meteorological Institute, https://cryo.met.no. Bathymetric basis according to GEBCO, https://www.gebco.net.

Download (1MB)

Copyright (c) 2025 Russian academy of sciences