On advective model of the ventilated thermocline
- Authors: Mirabel A.P.1, Vakulenko N.V.1
-
Affiliations:
- Shirshov Institute of Oceanology, Russian Academy of Sciences
- Issue: Vol 59, No 1 (2019)
- Pages: 5-11
- Section: Физика моря
- URL: https://journals.eco-vector.com/0030-1574/article/view/11819
- DOI: https://doi.org/10.31857/S0030-15745915-11
- ID: 11819
Cite item
Full Text
Abstract
A model of an advective thermocline is proposed for the case of continuously stratified Sverdrup circulation with a ventilated layer caused by the divergence of flows in the Ekman layer: an immiscible layer with homogenized vorticity and a layer of abyssal liquid, which applies to anticyclonic gyre waters. The results of calculations for the Atlantic Ocean (region 15-52°N, 00-63°E) made with this model are presented. With an abyssal density of 28.0, the values of the surface density and density of the unventilated layer grow to the north from 24.2 to 27.0 and from 27.8 to 27.9, respectively, with an almost zonal distribution, i.e. ventilation zones have latitudinal circles. From calculations of the depths of wind circulation, it follows that the ventilating layer is as deep as 900 m in the north-western region and raises to 250 m in the southern and eastern parts of the basin. The same tendency is traced for the depth of the gyre, but here there is an increase in depth from 500 to 1500 m. The active dynamics in the ventilating layer and the shadow area on the eastern border are noted. The structure of the thermocline is demonstrated with a typical zonal section, characterizing a much larger isopycnic increment for ventilated layers than in non-ventilated layers.
Keywords
About the authors
A. P. Mirabel
Shirshov Institute of Oceanology, Russian Academy of Sciences
Author for correspondence.
Email: vanava139@yandex.ru
Russian Federation, Moscow
N. V. Vakulenko
Shirshov Institute of Oceanology, Russian Academy of Sciences
Email: vanava139@yandex.ru
Russian Federation, Moscow
References
- Лебедев К.В. Арго-модель исследования глобального океана (АМИГО) // Океанология. 2016. Т. 56. № 2. С. 186-196.
- Линейкин П.С., Мадерич В.С. Теория океанического термоклина. Л.: Гидрометеоиздат, 1982. 171 с.
- Мирабель А.П., Мишина А.М. О влиянии стратификации и вентиляции на динамику субтропического круговорота // Океанология. 1999. Т.39. № 1. С. 30-35.
- Океанология. Физика океана / Под ред. Каменковича В.М. и Монина А.С. М.: Наука, 1978. Т. 2. 360 c.
- Cox M.D., Bryan K. A numerical model of the ventilated thermocline // J. Phys. Oceanogr. 1984. V. 14. № 4. P. 674-687.
- Huang R.X. On boundary value problems of the ideal-fluid thermocline // J. Phys. Oceanogr. 1988. V. 18. № 4. P. 619-646.
- Huang R.X. On the three-dimensional structure of the wind-driven circulation in the North Atlantic Dynamics of atmospheres and oceans // J. Phys. Oceanogr. 1989. V. 15. № 1-2. P. 117-159.
- Huang R.X. Climate variability inferred from a continuously stratified model of the ideal-fluid thermocline // J. Phys. Oceanogr. 2000. V. 30. № 6. P. 1389-1406.
- Huang R.X. An analytical solution of the ideal-fluid thermocline // J. Phys. Oceanogr. 2001. V. 31. № 8. P. 2441-2457.
- Huang R.X., Pedlosky J. Climate variability in-ferred from a layered model of the ventilated thermocline // J. Phys. Oceanogr. 1999. V. 29. № 4. P.779-790.
- Huang R.X., Russell S. Ventilation of the sub-tropical North Pacific // J. Phys. Oceanogr. 1994. V. 24. № 12. P. 2589-2605.
- Janowitz G.S. A surface density and wind-driven model of the thermocline // J. Geophys. Res. 1986. V. 91. № C4. P. 5111-5118.
- Keffer T. Ventilation of the Oceans: maps of the potential vorticity field // J. Phys. Oceanogr. 1985. V. 15. № 5. P. 509-523.
- Killworth P.D. A continuously stratified nonlinear ventilated thermocline // J. Phys. Oceanogr. 1987. V. 17. № 11. P. 1925-1943.
- Luyten J.R., Pedlosky J., Stommell H. The ventilated thermocline // J. Phys. Oceanogr. 1983. V. 13. № 3. P. 292-309.
- McDowell S., Rhines P., Keffer T. North Atlantic potential vorticity and its relation to the General Circulation // J. Phys. Oceanogr. 1982. V. 12. № 12. P. 1417-1436.
- Pallet J., Arhan M. Oceanic ventilation in the Eastern North Atlantic // J. Phys. Oceanogr. 1996. V. 26. № 10. P. 2036-2052.
- Pedlosky J. The dynamics of the oceanic subtropical gyres Science // J. Phys. Oceanogr. 1990. V. 248. № 4953. P. 36-42.
- Pedlosky J., Young W.R. Ventilation, potential-vorticity homogenization and the structure of the ocean circulation // J. Phys. Oceanogr. 1983. V. 13. № 11. P. 2020-2037.
- Qin B., Huang R.X. Ventilation of the North Atlantic and North Pacific: subduction versus obduction // J. Phys. Oceanogr. 1995. V. 25. № 10. P. 2374-2390.
- Rhines P., Young W.R. Homogenization of potential vorticity in planetary gyres // J. Fluid Mech. 1982. V. 122. P. 347-367.
- Sarmiento J.L. A tritium box model of the North Atlantic thermocline J. Phys. Oceanogr. 1983. V. 13. № 7. P. 1269-1274.
- Sumata H., Kubokava A. A numerical study of eastern boundary ventilation and its effects on the thermocline structure // J. Phys. Oceanogr. 2001. V. 31. № 10. P. 3002-3019.
- Talley L.D. Ventilation of the subtropical North Pasific: the shallow salinity minimum //J. Phys. Oceanogr. 1985. V. 15. № 6. P. 633-649.
- Welander P. The advective model of the ocean the thermocline // Tellus. 1959. V. 11. № 3. P. 309-318.
- Welander P. Some exact solutions to the equations, describing in ideal fluid thermocline // J. Mar. Res. 1971. V. 29. № 2. P.60-68.
Supplementary files
