Moored meteorological buoy as part of national green-house monitoring system in the Barents Sea

Cover Page

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Experimental deployment of surface meteorological moored buoy “Sea-Air-Wave Station” (SAWS) was performed during the expedition “European Arctic – 2024: a geologic annals of environmental and climate change” (96th cruise of RV “Akademik Mstislav Keldysh”) in the north-eastern part of the Barents Sea. Mooring design and instrumentation demonstrated validity of the meteorological buoy for usage as part of National green-house monitoring system.

Full Text

Restricted Access

About the authors

V. D. Sharmar

Shirsov Institute of Oceanology RAS

Author for correspondence.
Email: sharmar@sail.msk.ru
Russian Federation, Moscow

V. P. Tereschenkov

Shirsov Institute of Oceanology RAS

Email: sharmar@sail.msk.ru
Russian Federation, Moscow

A. V. Gavrikov

Shirsov Institute of Oceanology RAS

Email: sharmar@sail.msk.ru
Russian Federation, Moscow

A. V. Sinitzin

Shirsov Institute of Oceanology RAS

Email: sharmar@sail.msk.ru
Russian Federation, Moscow

M. D. Kravchishina

Shirsov Institute of Oceanology RAS

Email: sharmar@sail.msk.ru
Russian Federation, Moscow

A. A. Klyuvitkin

Shirsov Institute of Oceanology RAS

Email: sharmar@sail.msk.ru
Russian Federation, Moscow

A. N. Novigatsky

Shirsov Institute of Oceanology RAS

Email: sharmar@sail.msk.ru
Russian Federation, Moscow

N. D. Tilinina

Shirsov Institute of Oceanology RAS

Email: sharmar@sail.msk.ru
Russian Federation, Moscow

S. V. Pisarev

Shirsov Institute of Oceanology RAS

Email: sharmar@sail.msk.ru
Russian Federation, Moscow

S. V. Pisarev

Shirsov Institute of Oceanology RAS

Email: sharmar@sail.msk.ru
Russian Federation, Moscow

S. K. Gulev

Shirsov Institute of Oceanology RAS

Email: sharmar@sail.msk.ru
Russian Federation, Moscow

References

  1. Клювиткин А.А., Кравчишина М.Д., Новигатский А.Н. и др. Первые данные о вертикальных потоках осадочного вещества и параметрах среды на северном сегменте хребта Мона, Норвежское море // Докл. РАН. Науки о Земле. 2023. Т. 513. № 1. С. 126–133. https://doi.org/10.31857/S2686739723601618
  2. Решетников М.Г. Климатическая политика в России: наука, технологии, экономика // Проблемы прогнозирования. 2023. № 6 (201). С. 6–10. https://doi.org/10.47711/0868-6351-201-6-10
  3. Gulev S.K., Latif M., Keenlyside N. et al. North Atlantic Ocean control on surface heat flux on multidecadal timescales // Nature. 2013. V. 499. P. 464–467. https://doi.org/10.1038/nature12268
  4. Gulev S.K., Thorne P.W., Ahn J. et al. Changing State of the Climate System // Climate Change 2022: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK and New York, NY, USA: Cambridge University Press, 2022. P. 287–422. https://doi.org/10.1017/9781009157896.004
  5. Harden B.E., Renfrew I.A., Petersen G.N. Meteorological buoy observations from the central Iceland Sea // J. Geophys. Res. Atmos. 2015. V. 120. P. 3199–3208. https://doi.org/10.1002/2014JD022584
  6. Josey S.A., Grist J.P., Mecking J.V. et al. A clearer view of Southern Ocean air–sea interaction using surface heat flux asymmetry // Phil. Trans. R. Soc. A. 2023. 38120220067. http://doi.org/10.1098/rsta.2022.0067
  7. Lancaster O. et al. Comparative wave measurements at a wave energy site with a recently developed low-cost wave buoy (Spotter), ADCP, and pressure loggers //Jour. Atmos. Oceanic Technology. 2021. V. 38. № . 5. P. 1019–1033.
  8. Lind S., Ingvaldsen R.B., Furevik T. Arctic warming hotspot in the northern Barents Sea linked to declining sea-ice import // Nature Climate Change. 2018. V. 8(7). P. 634–639.
  9. Liss P.S., Slater P.G. Flux of gases across the Air-Sea interface // Nature. 1974. V. 247. P. 181–184. https://doi.org/10.1038/247181a0
  10. Ranganathan S., Weller R.A., Venkatesan R. et al. Performance of Moored Real-Time Ocean Observations During Cyclones in the Bay of Bengal // Marine Technology Society Journal. 2024. V. 58. № 3. P. 56–69. https://doi.org/10.4031/MTSJ.58.3.4
  11. Tilinina N., Gulev S.K., Bromwich D.H. New view of Arctic cyclone activity from the Arctic system reanalysis // Geophysical Research Letters. 2014. V. 41. № 5. P. 1766–1772.
  12. Wanninkhof R. Relationship between wind speed and gas exchange over the ocean revisited // Limnol. Oceanogr. Methods. 2014. V. 12. P. 351–362. https://doi.org/10.4319/lom. 2014.12.351
  13. Zhang R., Zhou F., Wang X. et al. Cool skin effect and its impact on the computation of the latent heat flux in the South China Sea // Jour. Geoph. Res.: Oceans. 2021. V. 126(1). https://doi.org/10.1029/2020JC016498

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. a) Sea-Air-Wave hydrometeorological Station before installation at station No. 8012, depth 164 m. b) Bottom topography in the section from Novaya Zemlya Island (A) to the islands of Franz Josef Land (B).

Download (1MB)
3. Fig. 2. Wind wave parameters measured by the SeaView SVS-603 sensor: significant wave height (a) and average period (b) in comparison with independent synchronous observations obtained using the Spotter wave measuring buoy during the period of setting the buoy from July 31 to August 18, 2024.

Download (380KB)
4. 3. Wind speed (according to the Vaisala 05106 sensor) and CO2 concentrations in the drive air layer (according to the Vaisala GMP 343 sensor) and in the surface water layer (according to the AMT CO2 sensor).

Download (286KB)

Copyright (c) 2025 Russian Academy of Sciences