Moored meteorological buoy as part of national green-house monitoring system in the Barents Sea

封面

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

Experimental deployment of surface meteorological moored buoy “Sea-Air-Wave Station” (SAWS) was performed during the expedition “European Arctic – 2024: a geologic annals of environmental and climate change” (96th cruise of RV “Akademik Mstislav Keldysh”) in the north-eastern part of the Barents Sea. Mooring design and instrumentation demonstrated validity of the meteorological buoy for usage as part of National green-house monitoring system.

全文:

受限制的访问

作者简介

V. Sharmar

Shirsov Institute of Oceanology RAS

编辑信件的主要联系方式.
Email: sharmar@sail.msk.ru
俄罗斯联邦, Moscow

V. Tereschenkov

Shirsov Institute of Oceanology RAS

Email: sharmar@sail.msk.ru
俄罗斯联邦, Moscow

A. Gavrikov

Shirsov Institute of Oceanology RAS

Email: sharmar@sail.msk.ru
俄罗斯联邦, Moscow

A. Sinitzin

Shirsov Institute of Oceanology RAS

Email: sharmar@sail.msk.ru
俄罗斯联邦, Moscow

M. Kravchishina

Shirsov Institute of Oceanology RAS

Email: sharmar@sail.msk.ru
俄罗斯联邦, Moscow

A. Klyuvitkin

Shirsov Institute of Oceanology RAS

Email: sharmar@sail.msk.ru
俄罗斯联邦, Moscow

A. Novigatsky

Shirsov Institute of Oceanology RAS

Email: sharmar@sail.msk.ru
俄罗斯联邦, Moscow

N. Tilinina

Shirsov Institute of Oceanology RAS

Email: sharmar@sail.msk.ru
俄罗斯联邦, Moscow

S. Pisarev

Shirsov Institute of Oceanology RAS

Email: sharmar@sail.msk.ru
俄罗斯联邦, Moscow

S. Pisarev

Shirsov Institute of Oceanology RAS

Email: sharmar@sail.msk.ru
俄罗斯联邦, Moscow

S. Gulev

Shirsov Institute of Oceanology RAS

Email: sharmar@sail.msk.ru
俄罗斯联邦, Moscow

参考

  1. Клювиткин А.А., Кравчишина М.Д., Новигатский А.Н. и др. Первые данные о вертикальных потоках осадочного вещества и параметрах среды на северном сегменте хребта Мона, Норвежское море // Докл. РАН. Науки о Земле. 2023. Т. 513. № 1. С. 126–133. https://doi.org/10.31857/S2686739723601618
  2. Решетников М.Г. Климатическая политика в России: наука, технологии, экономика // Проблемы прогнозирования. 2023. № 6 (201). С. 6–10. https://doi.org/10.47711/0868-6351-201-6-10
  3. Gulev S.K., Latif M., Keenlyside N. et al. North Atlantic Ocean control on surface heat flux on multidecadal timescales // Nature. 2013. V. 499. P. 464–467. https://doi.org/10.1038/nature12268
  4. Gulev S.K., Thorne P.W., Ahn J. et al. Changing State of the Climate System // Climate Change 2022: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK and New York, NY, USA: Cambridge University Press, 2022. P. 287–422. https://doi.org/10.1017/9781009157896.004
  5. Harden B.E., Renfrew I.A., Petersen G.N. Meteorological buoy observations from the central Iceland Sea // J. Geophys. Res. Atmos. 2015. V. 120. P. 3199–3208. https://doi.org/10.1002/2014JD022584
  6. Josey S.A., Grist J.P., Mecking J.V. et al. A clearer view of Southern Ocean air–sea interaction using surface heat flux asymmetry // Phil. Trans. R. Soc. A. 2023. 38120220067. http://doi.org/10.1098/rsta.2022.0067
  7. Lancaster O. et al. Comparative wave measurements at a wave energy site with a recently developed low-cost wave buoy (Spotter), ADCP, and pressure loggers //Jour. Atmos. Oceanic Technology. 2021. V. 38. № . 5. P. 1019–1033.
  8. Lind S., Ingvaldsen R.B., Furevik T. Arctic warming hotspot in the northern Barents Sea linked to declining sea-ice import // Nature Climate Change. 2018. V. 8(7). P. 634–639.
  9. Liss P.S., Slater P.G. Flux of gases across the Air-Sea interface // Nature. 1974. V. 247. P. 181–184. https://doi.org/10.1038/247181a0
  10. Ranganathan S., Weller R.A., Venkatesan R. et al. Performance of Moored Real-Time Ocean Observations During Cyclones in the Bay of Bengal // Marine Technology Society Journal. 2024. V. 58. № 3. P. 56–69. https://doi.org/10.4031/MTSJ.58.3.4
  11. Tilinina N., Gulev S.K., Bromwich D.H. New view of Arctic cyclone activity from the Arctic system reanalysis // Geophysical Research Letters. 2014. V. 41. № 5. P. 1766–1772.
  12. Wanninkhof R. Relationship between wind speed and gas exchange over the ocean revisited // Limnol. Oceanogr. Methods. 2014. V. 12. P. 351–362. https://doi.org/10.4319/lom. 2014.12.351
  13. Zhang R., Zhou F., Wang X. et al. Cool skin effect and its impact on the computation of the latent heat flux in the South China Sea // Jour. Geoph. Res.: Oceans. 2021. V. 126(1). https://doi.org/10.1029/2020JC016498

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. a) Sea-Air-Wave hydrometeorological Station before installation at station No. 8012, depth 164 m. b) Bottom topography in the section from Novaya Zemlya Island (A) to the islands of Franz Josef Land (B).

下载 (1MB)
3. Fig. 2. Wind wave parameters measured by the SeaView SVS-603 sensor: significant wave height (a) and average period (b) in comparison with independent synchronous observations obtained using the Spotter wave measuring buoy during the period of setting the buoy from July 31 to August 18, 2024.

下载 (380KB)
4. 3. Wind speed (according to the Vaisala 05106 sensor) and CO2 concentrations in the drive air layer (according to the Vaisala GMP 343 sensor) and in the surface water layer (according to the AMT CO2 sensor).

下载 (286KB)

版权所有 © Russian Academy of Sciences, 2025